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Introduction
Density functional theory (DFT) implementations1–7 offer a 
reasonable compromise between cost and accuracy in ab initio
materials science calculations,8 stimulating rapid devel-
opment of automated frameworks and corresponding data 
repositories. Prominent examples include the Automatic 
Flow Framework for Materials Discovery (AFLOW),9–12

Novel Materials Discovery Laboratory (NOMAD),13 Materials 
Project,14 Open Quantum Materials Database (OQMD),15

Computational Materials Repository and its associated script-
ing interface Atomic Simulation Environment (ASE),16 and 
Automated Interactive Infrastructure and Database for 
Computational Science (AiiDA).17 Such repositories house an 
abundance of materials data. For instance, the AFLOW.org 
database contains more than 1.8 million compounds, each char-
acterized by about 100 different properties.11,18–20 Investigations 
employing this data have not only led to advancements in 
modeling electronics,21–24 thermoelectrics,25,26 superalloys,27 and 
metallic glasses,28 but also the synthesis of new materials: for 
example, two new magnets, Co2MnTi and Mn2PtPd, which are 
the first discovered by computational approaches.29

Further advancements and discoveries are contingent on 
continued development and expansion of these materials 
repositories. New entries are generated both by (1) calculat-
ing the properties of previously observed compounds from 

sources such as the Inorganic Crystal Structure Database,30

and (2) decorating structural prototypes31—populating crystal 
sites of existing structures with atoms of different elements—
to predict new materials. Accurate computation of materials 
properties—including electronic, magnetic, chemical, crystal-
lographic, thermomechanical, and thermodynamic features—
demands a combination of reliable calculation parameters/
thresholds11 and robust algorithms that scale with the size/
diversity of the database. For example, convenient defini-
tions for the primitive cell representation9 and high-symmetry 
Brillouin zone path10 have optimized and standardized elec-
tronic structure calculations. Careful treatment of spatial tol-
erance and proper validation schemes have finally enabled 
accurate and fully autonomous determination of the complete 
symmetry profile of crystals,32 which is essential for elastic-
ity33 and phonon9,34–36 calculations.

Beyond descriptions of simple crystals, exploration of 
complex properties33,37 and materials28,38 typically warrants 
advanced (and expensive) characterization techniques.39–41

Fortunately, state-of-the-art workflows33,37,38 and careful descrip-
tor development28 have enabled experimentally validated 
modeling within a DFT framework. The combination of 
plentiful and diverse materials data11,18–20 and its program-
matic accessibility19,20 justify the application of data-mining 
techniques. These methods can quantitatively resolve subtle 
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trends and correlations among materials and their proper-
ties,22,23,25,26,42,43 as well as motivate the formulation of novel 
property descriptors.28,44 These “black-box” models, for which 
the learned, internal logic is largely obfuscated, are surpris-
ingly accurate and quite valuable, particularly when few prac-
tical alternative modeling schemes exist—as is the case for 
predicting superconducting critical temperatures.22,45

Ultimately, the power in machine learning (ML) lies in 
the speed of its predictions, which outpaces DFT calculations 
by orders of magnitude.46 Given that the number of currently 
characterized materials pales in comparison to the full space 
of hypothetical structures, methods to filter/screen the most 
interesting candidate materials47—powered by ML models—
will undoubtedly become integral to future materials discov-
ery workflows.

Thermodynamic formability modeling
Prediction of phase diagrams
Descriptions of thermodynamic stability and structural/
chemical disorder are resolved through statistical analyses of 
aggregate sets of structures. Thermodynamic stability largely 
governs synthesizability, which can be determined by an 
analysis of how structures of similar compositions compete 
energetically (i.e., determination of the minimum Gibbs free 
energy surface). The procedure is algorithmically equivalent 
to finding the lower-half convex hull of all the 
relative free-energy minima,48 as illustrated by 
the series of connected tie lines in Figure 1a. 
Composition and energy information from 
relevant AFLOW.org calculations are plotted, 
and the phases defining the minimum energy 
surface are identified.49 Assuming sufficient 
sampling, the ground-state structures on 
the minimum energy surface form the low- 
temperature phase diagram.50

The convex hull construction offers a 
wealth of related thermodynamic properties. 
For near-hull structures (entries close to the 
tie lines), the energetic distance from the mini-
mum energy surface is treated as a metric for 
synthesizability, as only small perturbations in 
temperature or pressure may be needed for it to 
be realized. In fact, this distance is equivalent 
to the amount of energy driving the decom-
position of an unstable state to a linear com-
bination of nearby ground-state structures.  
A similar distance—that of a stable phase from 
the pseudo-hull formed by neglecting that 
phase—quantifies the impact of a structure on 
the minimum energy surface and characterizes 
the robustness of stable structures (i.e., the sta-
bility criterion).29,51

AFLOW offers a module for autonomous 
calculation of the convex hull, which retrieves 
the set of relevant structure calculations from 

the repository19,20 and delivers a thorough thermodynamic 
characterization for each.51 Filtering schemes based on these 
thermodynamic properties, including the stability criterion 
and tie-line construction, played key roles in the discovery 
of new magnets29 and in modeling superalloys.27 The module 
powers an online web application for enhanced visualization 
of two-/three-dimensional hulls (available at www.aflow.org/
aflow-chull).

Modeling disordered materials
Incorporating the effects of disorder is a necessary, albeit 
difficult, step in materials modeling. Not only is disorder 
intrinsic to all materials, but it also offers a route to enhanced 
and even otherwise inaccessible functionality. Disordered 
materials range from chemically disordered high-entropy 
materials and solid solutions, in which sites on a periodic 
crystal lattice are randomly occupied, to structurally disor-
dered amorphous glasses exhibiting no crystalline periodic-
ity. Materials such as high-entropy alloys52,53 containing four 
to five metallic elements in equicomposition are currently 
being investigated for their enhanced thermomechanical 
properties,54–58 and have also been reported to display super-
conductivity.59 Research interest has recently expanded beyond 
metallic alloys to include high-entropy ceramics such as 
entropy stabilized oxides60,61 and high-entropy borides,62 

Figure 1. Descriptor for glass-forming ability (GFA). The GFA of metal-alloy systems can 

be predicted from the spread of formation energies of relevant ordered structures. Different 

structural phases with similar energies compete against each other during solidification, 

frustrating crystallization and promoting glass formation. A broad distribution of energies 

implies a low GFA, while a narrow distribution indicates a high GFA. (a) Energy-composition 

plot of CuZr. The series of connected tie lines define the minimum energy surface (convex 

hull).51 (b) An illustration of distinct structural phases (with composition Cu0.5Zr0.5) that are very 

close in energy, causing frustration during solidification. (c) Illustrations of two examples of 

energy distributions characterizing low and high GFA, respectively.28
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which display promising behavior including colossal dielec-
tric constants63 and superionic conductivity.64

Ab initio modeling of chemical/substitutional disorder—
including vacancies and random site occupations—is a 
notoriously formidable problem, since it results in systems 
that cannot be described directly by a single unit cell with 
periodic boundary conditions. Rigorous statistical treatment 
of chemical disorder leverages a set of representative ordered  
supercells in thermodynamic competition. System-wide prop-
erties are resolved through ensemble averages of these super-
cells. This approach has been implemented in AFLOW for 
autonomous characterization,38 and successfully validated for 
a number of technologically significant systems, including 
a zinc chalcogenide (ZnS1−xSex), a wide-gap oxide semicon-
ductor (MgxZn1−xO), and an iron alloy (Fe1−xCux), recovering 
characteristic trends as a function of composition and offering 
additional insight into underlying physical mechanisms. The 
module determines the smallest superlattice size that accom-
modates the required stoichiometry to within a user-defined 
tolerance, and then generates the corresponding superlattices 
using Hermite Normal Form matrices.65 All allowed decora-
tion permutations are considered for each superlattice variant, 
generating the full set of possible supercell configurations. 
Degeneracies are rapidly identified by comparing approximate 
structure energies calculated with the Universal Force Field 
method.66 Only unique supercells are individually character-
ized using standard ab initio packages.1–7 The ensemble aver-
age values of properties such as the electronic bandgap, density 
of states, and the magnetic moment—weighted according to 
a Boltzmann distribution for a particular temperature—are 
then calculated to resolve the behavior of the disordered 
material.

Metallic glasses lack an ordered lattice and associated 
defects, which endow them with a unique combination of 
superb mechanical properties67 and plastic-like processabil-
ity,68–70 and render them of great interest for several poten-
tial commercial and industrial applications.71–73 To predict the 
glass-forming ability (GFA) of metal-alloy systems,28 statisti-
cal approaches have been employed that blend the concept of 
thermodynamically competing ordered structures with the large 
quantities of precalculated data available in the AFLOW.org  
repository. The proposed physical mechanism is that ordered 
phases, which have similar energies, but are structurally dis-
tinct, compete against each other during solidification, frus-
trating crystal nucleation and thus promoting glass formation, 
as illustrated in Figure 1. The energy distribution of the differ-
ent structures can be considered as forming a thermodynamic 
density of states (Figure 1c). A narrow distribution indicates 
a high GFA, while a wider distribution implies a low GFA. 
Atomic environment74,75 comparisons determine the similar-
ity of ordered crystalline phases, enabling the formulation 
of a quantitative descriptor that can be applied to the entire 
AFLOW.org database. The different structures are weighted 
according to a Boltzmann distribution to create the GFA 
descriptor. The model is found to successfully predict 73% of 

the glass-forming compositions for a set of 16 experimentally 
well-characterized alloy systems, and also indicates that about 
17% of binary-alloy systems should be capable of glassifica-
tion. By exploiting the precalculated data in the AFLOW.org 
repository, this model can be leveraged to rapidly predict GFA 
as a function of composition for thousands of alloy systems, 
demonstrating the power of applying intelligently constructed 
descriptors to computational materials data.

The AFLOW formation energy data is also employed to 
train cluster expansion models to compute the energies of 
multicomponent alloys,76 which can be combined with ther-
modynamic modeling to predict the order–disorder transi-
tion temperature for solid solutions in high-entropy alloys.44 
Order–disorder transitions in the form of spinodal decomposi-
tion have also been proposed as a mechanism to (1) embed 
topologically protected conducting interface states in an insu-
lating matrix77 and (2) self-assemble nanostructures (such as 
thermoelectric devices78). The boundaries between different 
layers act as phonon scatterers, suppressing thermal conduc-
tivity and thus improving efficiency.

Exploiting ML algorithms
Model development
ML is rapidly emerging as a powerful tool for computational 
materials design.42,79–81 Given sufficient training data, algo-
rithms such as neural networks,82 random forests,83 gradient 
boosting decision trees,84 and support vector machines85 can 
learn to (1) identify the structures that are thermodynami-
cally accessible for a given composition42 and (2) accurately 
predict materials properties, such as the electronic bandgap,23 
elastic moduli,23,86 vibrational energies,26 and lattice thermal 
conductivity.87

The successful training of ML models depends on the set 
of features characterizing the material (i.e., the set of descrip-
tors that form the feature vector).42 Optimal descriptors are 
resolved by exploring different linear and nonlinear combina-
tions of properties, and extracting the most efficient feature 
vector via compressive sensing.43 Compressive sensing finds a 
sparse solution to the equations mapping the set of observable 
materials properties to the large set of possible test features—
effectively reducing the dimensionality of the problem. The 
algorithm also filters for physically meaningful combinations 
of properties, based on dimensional analysis, to maximize 
interpretability of the final descriptor set.

Several different ML frameworks are leveraging data 
from the AFLOW.org repository. The materials fingerprinting 
model22 codifies aspects of the electronic structure10 to serve 
as unique markers for each material. In particular, the number 
of bands that intersect high-symmetry Brillouin zone points 
at discretized energy values form the band-structure finger-
print (illustrated in Figure 2), while simple discretization of 
the density of states form the density of states fingerprint. The 
Tanimoto coefficient—a distance metric88—between finger-
print vectors quantifies the similarity of the electronic structure 
between different materials. These fingerprints are employed 
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for the construction of networks (i.e., materials cartography),22 
where materials are represented by nodes and similarity cor-
relates with relative positioning. When applied to compounds 
in the Inorganic Crystal Structure Database, significant clus-
tering and structure can be identified for these networks, par-
ticularly with respect to material complexity (binaries versus 
ternaries), type (metal versus insulator), and, surprisingly, 
superconducting critical temperature—a particularly elusive 
phenomenon in which the driving mechanisms are still hotly 
contested.22

In the case of high-temperature superconductors, signifi-
cant clustering suggests strong correlations among the elec-
tronic structure of these materials; although, as expected, 
these features alone are not enough to quantitatively resolve 
critical temperatures. Indeed, modeling improves with inte-
gration of more experimental observations45,89 and properties, 
such as structural features and partial charges.90 Incorporating 
additional relevant and physically meaningful training data, 
such as phonon spectra, should offer an applicability domain 
expansion and higher-fidelity predictions.

Thermomechanical properties calculated using the elas-
tic constants33 and Debye–Grüneisen37 modules of AFLOW 
have been employed to train a gradient boosting decision trees 
framework23 to predict quantities such as the bulk and shear 
modulus, Debye temperature, and heat capacity. Indicative 
of its versatility, the same model23 has also been trained on 
AFLOW electronic structure data to classify materials as 
metals or insulators, and to predict the electronic bandgap for 

compounds identified as nonmetals. Model 
development is based on a fragment construc-
tion approach: each crystal is represented by 
a graph where nodes are decorated with cor-
responding atomic properties and connectiv-
ity is dictated by distance and the geometry 
of the local environment (Voronoi polyhedra 
adjacency). Path and circular fragments— 
representative of linear geometry and coordina-
tion polyhedra within the crystal—form the 
basis for feature development. To train the 
models, the gradient boosting decision tree algo-
rithm is employed, which amalgamates a series 
of weak, easily constructed prediction rules to 
resolve a single, highly predictive function.

The resulting models have been thoroughly 
validated with simulated and real test sets, 
showing predictive metrics at 90% or higher 
against existing calculated and experimental 
measurements. Beyond property value predic-
tion, feature-importance analyses of the models 
recover meaningful ways to tune the bandgap 
and Debye temperature, offering practical 
design rules for device engineering. The devel-
opment of such models achieves the greatest 
impact on thermomechanical properties, where 
characterizations demand many single ab initio 

calculations, and thus presents a substantial boost in prediction 
speed at a fraction of the resources.

Workflow integration
ML approaches are expected to become indispensable in 
two specific scenarios: prediction of complex properties and 
screening of large sets of materials. Unfortunately, wide-
spread exploitation of ML techniques in materials science 
has been hindered by the difficulty of setting up and inter-
facing the models with materials design infrastructures. To 
streamline this process, the AFLOW-ML API91 has been 
created to provide programmatic access to the ML models 
described in References 23 and 26, with plans to extend it 
with additional models as they are developed. By posting 
a structure file to the API, users can retrieve ML predictions 
of thermal, mechanical, and electronic properties in the 
JavaScript Object Notation (JSON) data format.92 In this 
way, all technical details of the ML algorithms are abstracted 
away, rendering a simple interface no more complicated 
than that of a standard API. This procedure can be easily 
incorporated into materials design workflows, due to its use 
of ubiquitous HTTP commands, along with the JSON format 
that is easily interpreted by a wide range of modern program-
ming languages.

Source code and online forum
Since 2018, the AFLOW software (V3.1.204) has been made 
available for download/redistribution under the terms of the 

Figure 2. Construction of electronic structure fingerprints. (a) The density of electronic 

states in certain energy ranges at the high-symmetry points of the Brillouin zone (b) form a 

fingerprint for the structure. (c) The fingerprints for different materials are then compared to 

quantify their similarity. Note: BS, band structure.22
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GNU License, http://www.gnu.org/licenses. The source code/ 
license/readme files can be found at www.aflow.org/src/aflow. 
Though some of the aforementioned modules are conveniently 
interfaced through the website, only the executable offers 
full and unabridged functionality. Additionally, the Forum 
(www.aflow.org/forum) advertises updates and new function-
ality, and hosts discussion boards for registered members 
to post questions.

Conclusion
Broad-scale thermodynamic formability modeling and exploi-
tation of ML algorithms are the current frontiers in computa-
tional materials design. Recent progress in these fields has 
been enabled by large, programmatically accessible materials 
databases generated by automated computational infrastruc-
ture. Ensembles of ordered phases are being successfully 
employed to (1) construct phase diagrams and (2) formulate 
descriptors and models to predict the formation and proper-
ties of disordered materials. ML models have the potential 
to rapidly accelerate materials design as tools for predicting 
properties and identifying subtle/hidden trends—thus leading 
to enhanced understanding of the physical mechanisms under-
lying materials behavior.
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