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Predicting superhard materials via a machine learning
informed evolutionary structure search
Patrick Avery 1, Xiaoyu Wang1, Corey Oses 2, Eric Gossett2, Davide M. Proserpio 3,4, Cormac Toher 2,5, Stefano Curtarolo 2,5 and
Eva Zurek 1

The computational prediction of superhard materials would enable the in silico design of compounds that could be used in a wide
variety of technological applications. Herein, good agreement was found between experimental Vickers hardnesses, Hv, of a wide
range of materials and those calculated by three macroscopic hardness models that employ the shear and/or bulk moduli obtained
from: (i) first principles via AFLOW-AEL (AFLOW Automatic Elastic Library), and (ii) a machine learning (ML) model trained on
materials within the AFLOW repository. Because HML

v values can be quickly estimated, they can be used in conjunction with an
evolutionary search to predict stable, superhard materials. This methodology is implemented in the XTALOPT evolutionary algorithm.
Each crystal is minimized to the nearest local minimum, and its Vickers hardness is computed via a linear relationship with the shear
modulus discovered by Teter. Both the energy/enthalpy and HML

v;Teter are employed to determine a structure’s fitness. This
implementation is applied towards the carbon system, and 43 new superhard phases are found. A topological analysis reveals that
phases estimated to be slightly harder than diamond contain a substantial fraction of diamond and/or lonsdaleite.
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INTRODUCTION
Superhard materials are important in a wide variety of applications
including cutting and polishing, or as abrasives and coatings. They
typically contain light elements such as B, C, N, and O, which can
form short and strong covalent bonds, and they may have
complex potential energy surfaces (PES) with numerous low lying
minima. Because the main atomic constituents of superhard
materials all have similar masses, it is sometimes impossible to
determine their crystal structures from X-ray diffraction patterns
alone. As a result, first-principles calculations have been instru-
mental in uncovering the structures of a number of superhard
phases including R3m-BC2N,

1 the M-carbon phase formed upon
cold compression of graphite,2–4 Pnnm-CN,5 and cubic BC3.

6

Many superhard materials are metastable at ambient pressure/
temperature conditions, and the synthesis procedure can have an
impact on the product that is made. Therefore, a synergistic
feedback loop between theory and experiment is required for the
rational design of superhard phases with specific properties. For
example, recently an entropy-forming ability descriptor was
developed and used to predict novel carbides containing five
metals with a high hardness that were subsequently synthesized.7

Another example is the development of machine learning (ML)
models for the elastic moduli, which were subsequently employed
to screen hundreds of thousands of compounds found in a crystal
structure database. The most promising superhard ternaries,
Re0.5W0.5C and ReWC0.8, were subsequently synthesized and
experiments confirmed they were superhard at low load.8

The a priori prediction of superhard materials is a global
optimization problem that requires maximizing the computed

hardness in the space of the low-lying local minima on the PES.
Microscopic models employing quantities that can be readily
obtained such as the geometry of the crystal, atomic connectivity,
valence electron density, and electronegativity or ionicity of the
constituent atoms9–13 can be used to estimate a structure’s
hardness. Recently, the well-known crystal structure prediction
(CSP) algorithms CALYPSO12 and USPEX13 have been extended
towards the prediction of superhard phases. The structures
generated in the course of a CSP search with these programs
are typically optimized using first-principles calculations, and their
hardnesses are calculated using modified versions of either the
Šimunek-Vackář (SV)10 or the Li et al.11 methods, respectively. The
main deficiency of the original Li and SV equations is that they
predict unreasonably high hardness values for crystals with non-
bonding interactions that are necessary for maintaining the three
dimensional structure of the system, such as the van der Waals
forces between different layers of graphene in graphite. The
hardness models developed in CALYPSO and USPEX overcome
these limitations by using chemical graph theory to determine
which atoms are bonded to each other.
The hardness of a material can also be estimated given its

elastic properties, such as the bulk and shear moduli.14–16 One of
the advantages of these macroscopic hardness models is that they
do not depend explicitly upon quantities that are ambiguous or
hard to define, such as the atomic radii, bond electronegativity, or
the bond strength. However, because elastic properties are
expensive to calculate from first-principles, they have so far not
been coupled with CSP searches where the hardness of hundreds,
if not thousands, of structures would need to be obtained within a
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single run. Models that require the computed elastic properties
are typically only employed to determine the hardness of a
handful of promising structures found within a search.
Large materials databases that contain many measured and

calculated observables17–22 have allowed for the advent of ML
models that have demonstrated predictive power for numerous
properties, for example superconducting critical temperatures,23

electronic band gaps,24,25 elastic properties,24 and the melting
temperatures of unary and binary component solids.26 AFLOW
(Automatic FLOW) is an automatic framework for high-throughput
materials discovery17 that includes a materials database with over
2 million entries.27 Many properties have been calculated for the
materials in the AFLOW database including vibrational properties
with the Automatic Phonon Library (APL),17 thermal properties
with the Automatic GIBBS Library (AGL),28 and thermomechanical
properties such as the bulk and shear moduli with the Automatic
Elasticity Library (AEL).22,29 It is now possible to interact with the
AFLOW database via a RESTful API30 and the AFLUX materials
search API.31

Herein, we illustrate that the Vickers hardnesses, Hv, of a wide
variety of crystalline materials predicted by using a macroscopic
hardness model in conjunction with ML-derived bulk and shear
moduli obtained via the RESTful API32 available on AFLOW are in
excellent agreement with results obtained from first-principles
calculations. Both are in good agreement with experiment. These
developments make it possible to quickly calculate reasonable
hardness values for a given crystal structure using ML-based
elastic properties, and these hardness estimates can subsequently
be employed to calculate an individual’s fitness in a CSP algorithm
designed for the prediction of superhard phases. This technique is
implemented within the XTALOPT evolutionary algorithm (EA),33,34

and is subsequently applied towards the carbon system to search
for stable and superhard phases. Seventy-nine dynamically stable,
low energy, distinct topologies with Hv > 40 GPa are found in our
searches. Forty-three of the predicted structures have not been
reported previously.

RESULTS AND DISCUSSION
Macroscopic hardness models coupled with machine learning
Because the chemical bonding within a crystalline lattice affects
the bulk modulus, B, of the material, it has been proposed that B
can be a good indicator of hardness.35,36 While this is true for
specific classes of materials, such as diamond-like semiconductors,
it turns out that, although some exceptions exist, the shear
modulus, G, is a much better predictor of hardness.14,37,38 The
linear correlation between hardness and G was originally noted by
Teter in 1998,14 and in 2011, Chen et al. used the geometric shape
of the Vickers indenter to derive the correlation coefficient.15 We
refer to the resulting equation for estimating hardness,

Hv;Teter ¼ 0:151G; (1)

as the Teter model to distinguish it from another model developed
by Chen and co-workers in the same manuscript. Chen et al.
suggested that discrepancies between Hv,Teter and the experi-
mentally measured Vickers hardnesses resulted from neglecting
the plastic deformations in Eq. (1). In order to better account for
these effects, they proposed a new formula that employs the
famous Pugh’s modulus ratio, k= G/B, which correlates well with a
material’s brittleness. The parameters in the modified equation,
which we refer to as the Chen model, were obtained by an
empirical fit yielding

Hv;Chen ¼ 2ðk2GÞ0:585 � 3: (2)

Equation (1) was found to work well for brittle materials with a
large k. The Chen model, Eq. (2), yielded better estimates of the

hardness in most cases, with one exception being crystals with a
low k where the bonding was primarily metallic, such as fcc Al.
In 2012 Tian and co-workers noted that the intercept term in Eq.

(2) did not have a physical basis, and would yield negative values
for some materials such as KI and KCl.16 Therefore, they obtained a
revised formula, which we refer to as the Tian model, via refitting
the original function proposed by Chen et al. without the intercept
term as

Hv;Tian ¼ 0:92k1:137G0:708: (3)

The Vickers hardnesses estimated with the formulae of Chen and
Tian are in good agreement with experimental measurements for
many systems, but they tend to overestimate the hardness of ionic
compounds and materials for which Hv is less than ~5 GPa.
The two parameters in the above equations, G and B, have been

computed for over 5000 unique materials in the AFLOW database
via AEL.27 We employed their Voigt-Reuss-Hill average values,
GVRH, and BVRH, to estimate the Vickers hardnesses of 64 systems,
including many of those studied by Chen15 (data for the full set
can be found in Section S1 in the Supplementary Information, SI;
Table 1 lists results only for those systems considered in ref. 15).
This set of materials spanned a wide range of hardness values (
HExp
v ¼ 0:2� 96:0 GPa), and included ionic and covalently bonded

crystals, as well as intermetallics. It has been demonstrated that
AFLOW-AEL calculates reasonable bulk and shear moduli,29 so it
should not be a surprise that the Vickers hardnesses obtained
using them are in good agreement with experiment, and the
predicted values reflect the variation in the results of the models
themselves.
To analyze the agreement between the Vickers hardnesses

computed via AFLOW-AEL and the three different models in more
detail, a correlation analysis was performed, and the results are
provided in Fig. 1, which also plots the theoretical vs. the
experimental data. The Pearson and Spearman coefficients
measure the linear correlation between two variables, and the
monotonicity of the relation between them, respectively. The
normalized root-mean-squared relative deviation, RMSrD,
between the experimental and computed values was also found,
as it can be useful for distinguishing between different methods
that may have similar correlations with, but different deviations
from, experiment. Whereas the Pearson and Spearman coefficients
should ideally be equal to 1, a lower RMSrD is indicative of a better
agreement between theory and experiment. All three models
showed a high correlation, though the Pearson coefficient was
somewhat closer to unity for the Chen and Tian models, as
compared to the Teter model. The RMSrD is clearly lower for the
Teter model than the other two for this data set when AEL moduli
are used. However, the Teter model tends to underestimate the
Vickers hardnesses of materials with Hv > 40 GPa. Many of the
systems in the full data set are soft, with Hv < 5 GPa, and, as
previously mentioned, the macroscopic models are not so good at
predicting their hardness values. A correlation analysis was also
carried out for the subset of materials studied by Chen,15 see Table
1, and the results are provided in Section S2 in the SI. The
correlation coefficients for this subset of systems are higher than
for the full data set, and the RMSrD values are significantly lower,
<1.
The overwhelming majority of structures generated in a CSP

search will not be found within a repository such as AFLOW.
Moreover, it would not be feasible to carry out the first-principles
geometry optimizations (24 per structure, unless reducible by
symmetry) that AFLOW-AEL requires to obtain the bulk and shear
moduli for the hundreds, if not thousands, of structures generated
within a single CSP search. Therefore, we wondered if it would be
possible to take advantage of the power of data science by using
bulk and shear moduli obtained from the ML model that was
trained on the materials within the AFLOW repository instead?24

This Property-Labeled Materials-Fragments model24 uses atomic
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distance and a Voronoi tessellation to characterize the connectiv-
ity of a crystal structure: Voronoi cells that are centered on each
atom are constructed and two atoms are considered connected if
they are within a bonding distance threshold and their Voronoi
cells share a face. The connected atoms form a graph, and sections
of the graph define the “materials fragments”. The nodes of the
graph are decorated with elemental properties of the atomic
species at that site, such as electronegativity, ionization energy,
and atomic number. Combinations of these elemental properties,
along with other properties of the crystal such as lattice
parameters and space group, form the feature vector representing
the material. The ML model is based on gradient boosted decision
trees,39 and is trained on elastic properties calculated using AEL.
This model was able to predict the GVRH and BVRH of over 85% of
the systems tested to within 20 GPa of the values calculated via
AEL, with the ML moduli typically being smaller. The deviation was

most pronounced for systems with a large GVRH, and significant
differences for BVRH were found for graphite and two theoretical
high-pressure B-N phases.
While it would be preferable to train the ML model directly to

predict hardness values, this would require training directly on
experimental data, since hardness cannot be calculated directly
from first-principles.15,16,37 However, because experimental hard-
ness data is not readily available in the quantity and quality
required to train ML models (reported experimental values can
vary by more than 10%,37 as discussed in Section S4 in the SI),
models based on calculated elastic moduli must be used. For
example, a recent combined theoretical/experimental ML directed
search for superhard materials trained an ML model to predict G
and B, which were assumed to be good proxies for hardness, and
no attempts to estimate hardness were made.8

Table 1. A comparison of the Vickers hardness, Hv, for various materials computed via the Teter (Eq. (1)), Chen (Eq. (2)), and Tian (Eq. (3)) models
using the Voigt-Reuss-Hill (VRH) averages of the bulk, B, and shear, G, moduli obtained from the Automatic Elasticity Library (AEL) and via a Machine
Learning (ML) model trained on the AFLOW database, with experiment. Hv, B, and G are given in units of GPa. The dataset used was taken from ref. 15,
which also provides the experimental values. A full table with results for all of the 64 structures used in the correlation analyses and the plots in Fig. 1
is provided in Section S1 in the SI

Name HExp;
v

a GAEL
VRH BAELVRH HAEL

v;Teter HAEL
v;Chen HAEL

v;Tian GML
VRH BML

VRH HML
v;Teter HML

v;Chen HML
v;Tian

Diamond 96.0 517.9 434.0 78.2 92.2 93.9 514.0 430.2 77.6 91.9 93.5

BC2N 76.0 411.6 372.5 62.2 73.1 73.1 363.6 354.0 54.9 62.0 61.6

c-BN 66.0 380.3 372.4 57.4 63.2 63.2 386.8 332.7 58.4 74.9 74.2

β-SiC 34.0 186.6 212.4 28.2 33.6 32.2 163.8 201.5 24.7 28.0 26.9

SiO2 33.0 201.2 270.1 30.4 28.5 28.1 187.2 237.8 28.3 29.3 28.5

ReB2 30.1 270.0 331.8 40.8 38.6 38.3 257.9 333.4 38.9 35.1 35.0

WC 30.0 272.3 377.4 41.1 33.3 33.6 247.0 369.0 37.3 28.4 28.8

VC 29.0 215.6 295.7 32.6 29.0 28.8 164.1 274.8 24.8 18.6 18.9

ZrC 25.8 157.0 220.9 23.7 22.8 22.4 136.0 194.4 20.5 20.3 19.9

TiC 24.7 177.8 238.8 26.8 26.3 25.8 145.9 220.8 22.0 19.7 19.6

TiN 23.0 171.2 269.8 25.9 20.8 20.9 141.5 240.5 21.4 16.5 16.8

RuO2 20.0 138.0 267.6 20.8 13.5 14.2 125.6 231.5 19.0 13.5 14.1

NbC 18.0 201.8 298.7 30.5 25.2 25.2 157.8 266.0 23.8 18.0 18.3

AlN 18.0 122.2 195.1 18.5 16.2 16.2 126.7 191.2 19.1 18.0 17.8

NbN 17.0 129.1 305.9 19.5 9.5 10.8 107.1 286.9 16.2 6.7 8.2

HfN 17.0 158.7 269.5 24.0 17.9 18.2 132.9 248.5 20.1 13.8 14.4

GaN 15.1 106.0 175.3 16.0 14.0 14.1 105.5 173.7 15.9 14.0 14.1

ZrO2 13.0 102.0 233.5 15.4 8.4 9.5 101.8 194.8 15.4 11.0 11.6

Si 12.0 62.5 89.1 9.4 11.8 11.5 51.2 81.3 7.7 8.6 8.8

GaP 9.5 51.3 78.8 7.7 9.1 9.2 37.5 74.0 5.7 4.5 5.5

AlP 9.4 46.4 82.9 7.0 6.6 7.2 45.7 82.6 6.9 6.4 7.0

InN 9.0 54.9 124.4 8.3 5.0 6.2 50.0 115.5 7.5 4.4 5.7

Ge 8.8 46.2 61.5 7.0 10.5 10.0 45.5 60.3 6.9 10.4 10.0

GaAs 7.5 40.8 62.7 6.2 7.6 7.8 34.0 58.3 5.1 5.4 6.1

Y2O3 7.5 62.3 137.9 9.4 5.9 6.9 60.7 123.8 9.2 6.6 7.5

InP 5.4 31.6 60.4 4.8 4.1 5.1 25.7 58.5 3.9 2.1 3.6

AlAs 5.0 39.3 67.4 5.9 6.1 6.7 36.3 64.6 5.5 5.3 6.1

GaSb 4.5 29.6 47.0 4.5 5.4 6.0 27.2 44.4 4.1 4.8 5.5

AlSb 4.0 28.5 49.4 4.3 4.5 5.3 26.5 47.9 4.0 3.8 4.8

InAs 3.8 26.2 63.6 4.0 1.8 3.4 26.1 59.4 3.9 2.1 3.6

InSb 2.2 20.1 38.1 3.0 2.5 3.7 17.4 36.5 2.6 1.4 3.0

ZnS 1.8 33.9 71.2 5.1 3.6 4.8 30.9 68.8 4.7 2.8 4.2

ZnSe 1.4 27.5 58.2 4.2 2.8 4.1 24.9 56.7 3.8 2.0 3.5

ZnTe 1.0 22.1 43.8 3.3 2.5 3.8 18.4 37.3 2.8 1.8 3.2

aExperimental data are taken from ref. 15
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Unsurprisingly, Table 1 shows that the AFLOW-ML model also
typically underestimated the bulk and shear moduli of the
structures considered herein, and it tended to do a better job in
predicting BVRH as opposed to GVRH. This suggests that the ML-
derived Vickers hardnesses will be smaller than those obtained
using AEL for all three models. Comparison of the hardness
values obtained with ML vs. AEL in Table 1 and Fig. 1 shows that
in general these expectations hold, with the exception of c-BN
and AlN for all three models, and SiO2, ZrO2, and Y2O3 for the
Chen and Tian models. The correlation coefficients for the ML
and AEL results shown in Fig. 1 are similar, but the RMSrD values

are somewhat smaller for the results obtained using the ML
moduli.
Our findings suggest that the ML moduli can be used to obtain

reasonable estimates of the hardness of a given material quickly,
making it possible to employ them to determine the fitness of an
individual in an EA based structure search. But which one of the
macroscopic models should be used? During our EA searches on
the elemental carbon system we found that in some instances the
ML-derived BVRH were extremely small, and when they were used
in the denominator in Eqs. (2) and (3), unrealistically hard values
were obtained, with several systems being predicted to be much
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RMSrD        5.610
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RMSrD        5.366

Pearson      0.937
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Spearman   0.872
RMSrD        8.688

Fig. 1 A comparison of the Vickers hardness, Hv in GPa, for 64 materials (see the SI) computed via the Teter (Eq. (1)), Chen (Eq. (2)), and Tian
(Eq. (3)) models using the Voigt-Reuss-Hill averages of the bulk and shear moduli obtained from the Automatic Elasticity Library (AEL) and via a
Machine Learning (ML) model trained on the AFLOW database, with experiment. The line represents a perfect correlation. The Pearson and
Spearman coefficients between the experimental and theoretical data are provided, as is the root-mean-squared relative deviation, RMSrD
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harder than diamond itself. Only the Teter model was able to
predict that these crystals had a very low Vickers hardness. For the
64 systems in our test set, the Pearson and Spearman correlation
coefficients between the Vickers hardness values calculated using
the Teter model and AEL vs. ML were 0.993 and 0.980,
respectively, and the RMSrD was 0.156. Moreover, the Chen and
Tian models are theoretically less satisfying than the Teter model,
since they are empirically fitted and result in an incorrect
dimension. Thus, the Teter model, Eq. (1), was chosen for the
hardness evaluations since it can differentiate between the hard
crystals that are kept in the gene pool during the evolutionary
search, as described in the following section, and those that
are soft.

The XTALOPT evolutionary algorithm
EAs employ concepts from biological evolution to find an optimal
solution for problems that have many degrees of freedom. When
applied towards a priori CSP, EAs search for the lattice parameters
and atomic coordinates that minimize or maximize a computed
quantity. Because EAs are typically concerned with finding the
global minimum (along with important local minima) on the PES,
they attempt to minimize the computed energy/enthalpy.40 An EA
starts by generating a set of random structures (structures chosen
by the user, also known as seeds, may also be employed) that are
relaxed to the nearest local minima by an external program. The
fitness of each optimized individual is calculated and used to
determine the probability that it will be chosen for procreation.
Child structures are created either via a two-parent breeding
operation, or by a mutation of a single parent. Further details
about the XTALOPT EA, and its subprograms can be found in
refs. 33,34,41–43 (https://xtalopt.github.io/).
The original implementation of the open source EA for CSP,

XTALOPT,33 uses roulette wheel selection where the probability pi
that a structure with energy/enthalpy Ei is chosen for procreation
is equal to its fitness. The probability is calculated as:

pi ¼ N 1� Ei � Emin

Emax � Emin

� �
; (4)

where Emin and Emax are the lowest and highest energies/
enthalpies in the breeding pool, respectively, and N is a
normalization constant chosen to ensure that

P
pi ¼ 1. The lower

the energy/enthalpy of an individual, the more likely it is to be
selected as a parent for the subsequent generation.
In the algorithms designed to predict superhard materials that

are implemented within CALYPSO12 and USPEX,13 the hardness, as
calculated via a microscopic model, is employed to determine an
individual’s fitness. Using roulette wheel selection, and maximiz-
ing the Vickers hardness instead of minimizing the energy/
enthalpy, Eq. (4) becomes

pi ¼ N 1� Hv;max � Hv;i

Hv;max � Hv;min

� �
: (5)

The higher the hardness of an individual, Hv,i, the more likely it is
to be selected for breeding.
Because we are interested in predicting the structures of

superhard materials that could potentially be synthesized, it is
desirable that they correspond to low lying local minima.
Therefore, the new fitness function implemented within XTALOPT

combines Eqs. (4) and (5) to favor the selection of structures that
are both low in enthalpy and high in hardness via:

pi ¼ N 1� w
Hv;max � Hv;i

Hv;max � Hv;min

� �
� ð1� wÞ Ei � Emin

Emax � Emin

� �� �
; (6)

where the weight, w, is a fractional number between 0 and 1.
Herein, we employed a w= 0.5, and the Vickers hardnesses used
to determine pi were computed via the Teter model, Eq. (1), using
the ML values of the shear modulus.

Most EAs do not keep every optimized structure within the
breeding pool, but rather only a user-specified number of the
fittest individuals. In the original version of XTALOPT, the lowest
energy/enthalpy structures were placed in the breeding pool. In
the current implementation, the fitness of each individual is
computed prior to normalization using Eq. (6). The crystals with
the highest pi are placed in the breeding pool, and their
normalized probabilities are computed and used.

Applications to carbon
Above we have shown that the Vickers hardness of a compound
can be computed with reasonable accuracy via Teter’s equation
using the shear modulus obtained with a ML algorithm, and
proposed a fitness function that can be used in conjunction within
an evolutionary structure search to predict superhard materials. To
determine how well this approach works, we performed an EA
search on elemental carbon. This system was chosen because of
the diversity of the crystalline carbon family that arises from the
possibility of sp, sp2, and sp3 hybridized bonds, leading to an
infinite number of structures within its chemical space. Moreover,
the hardness of its family members ranges from that of soft
layered graphite to diamond, the hardest known material on this
planet, as well as many well-known superhard species including
lonsdaleite, M-carbon, Z-carbon, F-carbon, among many others.
The wide range of possible Vickers hardnesses and crystalline
topologies within the carbon system creates a tremendous space
for XTALOPT to explore, and we are able to evaluate its performance
by observing its efficiency on finding pearls, the superhard
species, from the ocean of carbon crystals. We expect our EA
search will find many reported structures, illustrating that it works,
and show that it is a predictive tool that can discover new
topologies.
Figure 2 plots HML

v;Teter for all of the 5624 optimized individuals vs.
their energy. The plot is partitioned into four quadrants following
the standard suggested by Zhang et al.12. We define superhard
structures to have a Vickers hardness larger than 40 GPa, and
thermodynamically stable structures to be those whose 0 K
energies are less than −8.80 eV/atom, which is within 0.30 eV/
atom of diamond. For comparison, the energy of M-carbon, which
has been synthesized under pressure,2–4 was computed to be
−8.93 eV/atom. The superhard species that could potentially be
synthesized lie in the top left quadrant of the hardness-energy
map, and soft stable ones are found in the bottom left. Superhard
phases with comparably high energies are located in the top right
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Fig. 2 The hardness vs. energy map of all carbon topologies
predicted by the XTALOPT searches. The horizontal line corresponds
to a HML

v;Teter ¼ 40GPa, and the vertical line to an energy of −8.80 eV/
atom. The structures in the yellow quadrant are both stable and
superhard
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hand side of the plot, and unstable soft systems are at the bottom
right. The energy of 1324 structures was less than −8.80 eV/atom,
and from these 827 had a Vickers hardness greater than 40 GPa.
Duplicates were removed from the yellow quadrant in Fig. 2,
resulting in 89 distinct topologies, which were found by XTALOPT,
that are both hard and thermodynamically favored. Phonon
calculations showed that ten of these phases, all containing sp2

carbons, were dynamically unstable. Phonon dispersion curves
and phonon density of states plots for all structures, as well as
thermodynamic properties for stable structures can be found in
Section S3 in the SI. Therefore, in our searches, which employed
cells containing 8, 12, 16, and 20 carbon atoms, 79 hard and stable
individuals were found.
To determine if the predicted structures are already known, and

avoid making false claims of novelty, the Samara Carbon Allotrope
Database (SACADA) was employed (http://sacada.sctms.ru).44

SACADA has collected the crystal structures and physical proper-
ties from both experiment and theory of more than 500 3D carbon
allotropes. Among the hard species found via XTALOPT, 36 are
already known, including diamond (#1, dia), lonsdaleite (#37, lon),
a chiral-framework (#29, unj), M-carbon (#224, cbn), Z-carbon
(#141, sie), F-carbon (#225, 44T35), bct4-carbon (#60, crb), and
BC8-carbon (#20, gsi). Some of these are also present in the
AFLOW crystal prototype library.45 The SACADA ID numbers and
densities of the previously known phases are reported in Table 2,
which also provides a comparison between our HML

v;Teter results with
the hardness values computed by others. The reason why the
HML
v;Teter for diamond given in Table 1 differs slightly from that in

Table 2 is because in the first case the structure was taken as-is
from the AFLOW database, and in the second case it was
optimized again by us.
Figure 1 clearly illustrates that the Teter model tends to

underestimate the Vickers hardnesses of superhard materials.
Therefore, it is not surprising that almost all of our HML

v;Teter values
are lower than the Vickers hardness estimates of others. However,
once a structure has been predicted by an EA, it is always possible
to compute its hardness using a more accurate and computa-
tionally expensive hardness model. What is important is that for
the unit cell sizes employed herein, our EA is able to find most of
the hard stable carbon structures predicted earlier in refs. 12,13.
Plus, we find many new stable superhard phases not reported in
SACADA, or known as of yet in the literature.
Table 2 shows that the computed HML

v;Teter for the previously
known individuals is typically 10–20 GPa lower than the values
obtained using the microhardness models implemented within
CALYPSO12 and USPEX.13 One exception is for the chiral-
framework structure (#29, unj) originally predicted in ref. 46,
which we find to be 28.5 GPa less hard than diamond. The
aforementioned microhardness models computed diamond to be
only 8–8.4 GPa harder than this P6522 symmetry structure. It
should be noted, however, that the chiral framework is
significantly less dense than diamond (ρ= 3.21 g/cm3 vs. 3.50 g/
cm3), and it would be quite remarkable if it were nearly as hard.
The value of HML

v;Teter obtained herein for this phase, 47.1 GPa, is
close to Vickers hardnesses we calculate for phases with a similar
density: bikitaite carbon, 6B, G158 and 3,4,4T154.
In addition to the previously predicted phases, our algorithm

identified 53 new low-energy topologies that were superhard.
Calculations of the phonons and elastic constants confirmed that
43 of these were dynamically and mechanically stable. A summary
table, which lists the hardness, relative stability and topological
properties of these phases is provided in Section S5 in the SI, and
their fascinating structures, properties and electronic structures
will be discussed in detail in a follow-up paper. Table 3 lists the ML
and AEL values of their bulk and shear moduli, as well as the
corresponding Vickers hardnesses computed with the Teter
model. Their energy relative to diamond, density, and pressure
above which their enthalpies become lower than that of graphite

Table 2. Stable superhard structures discovered using the XTALOPT

evolutionary algorithm that have been predicted before. Either the
well-known names, or those used in the first paper reporting the
structure, are provided, along with the SACADA ID and topology. The
Vickers hardness (GPa) as calculated via the Teter model using the ML
shear modulus, HML

v;Teter , or computed in other studies, Hothers
v , as well as

the density, ρ, in g/cm3 of the optimized structures is also given

Names SACADA ID
(Topology)

HML
v;Teter Hothers

v ρ

Diamond 1 (dia) 75.6 89.5b, 87.3b,
95.4b, 97.5b,
89.7c

3.50

bc8 20 (gsi) 74.4 88.6b 3.56

Chiral-framework 29 (unj) 47.1 81.5b, 90.8b,
81.3c

3.21

Lonsdaleite 37 (lon) 79.3 89.1b, 89.1c,
97.3d

3.49

bct-C4 60 (crb) 65.6 84.4b, 82.0b,
92.9b, 84.0c

3.31

Y-carbon 81 (cag) 62.8 3.31

T12 107 (cdp) 68.2 85.1b 3.35

4H-diamond 111 (cfc) 78.3 98.1d 3.50

Bikitaite carbon 124 (bik) 48.4 3.23

Z-carbon 141 (sie) 71.8 85.1b, 84.4b,
95.1b

3.40

6B 179 (NSI) 48.8 3.25

C2/m-16 186 (43T85) 68.6 84.9b 3.35

12R-diamond 209 (SiC12) 77.0 3.50

oc16 210 (3,43T72) 52.3 42.9d 3.27

W-carbon 218 (cnw) 70.4 85.3b, 83.1b,
93.8b

3.35

M-carbon 224 (cbn) 68.0 85.0b, 82.7b,
93.5b, 84.3c

3.34

F-carbon 225 (44T35) 70.4 84.7b 3.33

P21/m 245 (45T27) 70.8 85.4b 3.36

12D 256 (46T15) 72.1 3.40

oP20 260 (46T16) 75.4 91.4d 3.42

Z-carbon-3 262 (46T7) 72.1 92.6d 3.40

mS32 291 (48T16) 72.6 90.8d 3.41

Z-carbon-2 293 (48T5) 75.6 92.4d 3.42

mP16 294 (48T15) 75.8 91.0d 3.41

16D 336 (416T3) 75.9 3.41

16B 337 (416T2) 72.7 3.42

G6 358 (46T28) 66.8 3.33

G21 365 (45T49) 69.3 3.33

G120 420 (44T85) 68.7 3.36

G153 447 (cfe) 77.8 3.50

G158 451 (mbc-4,4-
Imma)

47.1 3.26

G178 470 (48T44) 78.3 3.48

G225 511 (48T49) 72.6 3.41

3,4,4T154a not published 48.0 3.19

8-layered SiC
polytypea

not published 77.0 3.50

Deem hyp. Zeolite 8047698 54.5 3.30

aStructures are in the SACADA database but have not yet been
published online
bHardness values are from ref. 12 and references therein
cHardness values are from ref. 13
dHardness values are from the SACADA database
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are also given. The caption of Table 3 provides the correlation
coefficients and RMSrD between the ML and AEL Vickers
hardnesses computed for these new phases using the Teter,

Chen and Tian equations. The best agreement between the ML
and AEL values is obtained for the Teter model.
M-carbon (#224, cbn), whose HML

v;Teter is computed to be
68.0 GPa, can be made by compressing graphite to

Table 3. New stable superhard structures predicted by the XTALOPT evolutionary algorithm. Eref is the energy relative to diamond (eV/atom). The
Voigt-Reuss Hill (VRH) average of the bulk, B, and shear, G, moduli obtained from the Automatic Elastic Library (AEL) and via a Machine Learning (ML)
model trained on the AFLOW database, and the Vickers hardness, Hv, as computed via the Teter model (Eq. (1)) are provided. The density, ρ, in g/cm3,
percent of diamond and lonsdaleite found in the structure, and pressure, P, above which the structures are computed to become more stable than
graphite are listed. B, G, Hv, and P are given in units of GPa. The Pearson and Spearman coefficients, along with the RMSrD between the AEL and ML
results are 0.858, 0.895, 0.115 for the Teter model, 0.811, 0.849, 0.201 for the Chen model and 0.818, 0.854, and 0.200 for the Tian model

Name Eref BML
VRH BAELVRH GML

VRH GAEL
VRH HML

v;Teter HAEL
v;Teter ρ % dia/lon P

R3m-16 0.001 404.5 434.7 504.9 521.6 76.2 78.8 3.50 100 7.6

R3m-16 0.007 404.6 435.1 504.8 523.0 76.2 79.0 3.50 100 8.1

P2/m-12 0.133 421.6 414.6 494.2 467.1 74.6 70.5 3.38 31.6 20.3

Imm2-12 0.137 387.0 415.2 474.3 468.1 71.6 70.7 3.38 31.9 20.7

C2/m-20c 0.142 392.1 419.7 468.4 487.7 70.7 73.6 3.40 38.3 20.6

Imma-16 0.143 387.2 413.4 468.8 452.8 70.8 68.4 3.38 72.9 21.2

P1-16a 0.149 399.0 413.3 447.9 461.3 67.6 69.7 3.36 0 22.4

C2/m-20d 0.160 380.5 406.4 424.3 453.0 64.1 68.4 3.32 38.0 24.4

Pmm2-20 0.165 401.1 406.9 424.0 454.3 64.0 68.6 3.32 38.3 25.0

C2/m-20a 0.176 386.5 409.1 447.7 440.2 67.6 66.5 3.35 19.0 25.3

C2/m-16a 0.179 378.5 406.1 439.1 419.8 66.3 63.4 3.33 11.9 26.1

C2/m-16ba 0.187 382.1 409.1 449.1 403.9 67.8 61.0 3.35 24.3 26.3

C2/m-20b 0.193 384.7 410.5 450.0 445.2 67.9 67.2 3.36 20.1 26.7

C2/m-12a 0.193 384.9 411.0 455.3 448.3 68.7 67.7 3.36 0 26.5

C2/m-16c 0.207 382.8 411.4 474.3 448.4 71.6 67.7 3.38 48.0 27.6

C2/m-12b 0.211 370.4 396.1 317.0 424.3 47.9 64.1 3.24 0 33.1

P1-20 0.215 392.5 388.7 303.5 403.2 45.8 60.9 3.18 0 37.1

Cmmm-12a 0.216 367.7 389.6 300.0 397.3 45.3 60.0 3.18 0 36.9

C2/m-12c 0.226 370.4 391.7 314.3 392.6 47.5 59.3 3.23 0 35.9

Cmmm-20a 0.227 394.4 400.4 346.8 396.1 52.4 59.8 3.28 19.3 33.2

C2/m-16d 0.228 377.4 401.9 363.8 414.7 54.9 62.6 3.30 11.4 32.7

P21/m-16a 0.228 414.2 404.5 440.0 444.6 66.4 67.1 3.32 12.7 32.1

Cmmm-12ba 0.233 381.8 386.1 295.1 319.8 44.6 48.3 3.17 0 39.7

P1-16ca 0.242 407.2 412.6 472.1 445.0 71.3 67.2 3.38 48.4 31.2

Pmma-16a 0.242 394.3 399.0 360.6 408.8 54.5 61.7 3.29 23.8 34.6

Pmma-12 0.242 396.4 391.3 330.1 401.6 49.8 60.6 3.22 0 38.8

P1-16d 0.248 411.5 421.8 504.5 480.3 76.2 72.5 3.45 61.6 29.8

Pm-16 0.250 410.2 399.2 375.8 411.9 56.8 62.2 3.29 0 35.5

P21-16 0.255 404.0 408.9 451.5 448.1 68.2 67.7 3.35 0 33.8

P1-16ea 0.258 408.5 412.5 473.3 449.1 71.5 67.8 3.38 49 33.0

P1-16ba 0.259 410.3 412.6 479.2 448.9 72.4 67.8 3.38 48.7 33.3

P212121-16 0.263 389.2 389.6 311.4 380.3 47.0 57.4 3.22 0 41.7

P1-12 0.267 386.9 386.7 305.5 366.1 46.1 55.3 3.17 0 46.5

Pmma-16b 0.274 397.0 393.0 343.6 392.6 51.9 59.3 3.26 46.7 40.4

P2/c-16 0.276 393.8 395.8 322.5 415.2 48.7 62.7 3.25 0 41.9

P1-16d 0.276 412.3 414.4 479.6 461.7 72.4 69.7 3.40 0 34.4

P1-16aa 0.278 403.8 406.0 447.0 409.9 67.5 61.9 3.35 43.4 36.5

P1-12 0.281 417.0 424.5 500.4 492.7 75.6 74.4 3.47 33.7 32.3

P1-16ba 0.282 385.7 388.6 300.0 372.4 45.3 56.2 3.21 0 45.9

P1-16c 0.285 414.6 417.2 485.9 467.4 73.4 70.6 3.43 23.5 34.3

P1-16f 0.286 410.1 411.8 476.6 451.9 72.0 68.2 3.40 36.7 35.5

P2/m-16 0.288 401.3 389.5 329.0 386.6 49.7 58.4 3.22 0 44.8

P1-16e 0.290 413.1 417.4 486.5 470.2 73.5 71.0 3.42 23.7 34.9

aStructures that contain sp2 carbon atoms
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~17–19 GPa.2,3 Thus, it might be possible to synthesize some of
the newly predicted superhard phases under pressure by an
appropriate choice of the carbon allotrope starting material and
the synthesis route. Metastable carbon phases have been
previously synthesized by compressing glassy carbon47,48 or onion
carbon,49,50 for instance. To study this further, we computed the
pressures above which the newly predicted superhard phases
become more stable than graphite. The transition pressures for
diamond-like structures (more on this below) were typically
between 7 and 8 GPa, whereas other structures have transition
pressures within 23 and 47 GPa. Generally speaking, the higher
density phases were predicted to become enthalpically favored
over graphite at lower pressures, and they had larger Vickers
hardnesses than the low density phases, as expected.
Since both the ML and AEL shear moduli of lonsdaleite are

larger than that of diamond, but the bulk moduli are about the
same, lonsdaleite is predicted to have a slightly higher Vickers
hardness by all three macroscopic hardness models. Lonsdaleite
has, in fact, been previously predicted to have superior mechan-
ical properties as compared to diamond,51,52 but its experimental
existence has been questioned,53 although there are some recent
claims of its synthesis both through static47 and shock
compression.54

HML
v;Teter for a few of the predicted structures was computed to be

at least as high as that of diamond. This includes the following
from Table 2: 4H and 12R diamond, G153, and 8-layered SiC. These
are all composed entirely of mixtures of lonsdaleite and diamond:
they are members of the infinite family of dia-lon polytypes. The
tiling approach, wherein a 3D periodic net is represented as a
tiling of generalized polyhedra, has previously been employed to
analyze the topology of sp3 bonded and amorphous carbon
allotropes.55,56 Using this method to extract the content of
diamond and lonsdaleite topological building blocks in each
superhard allotrope found in our EA searches revealed two new
dia-lon polytypes that were also, unsurprisingly, found to be
harder than diamond (R3m-16 and R3m-16, see Table 3).
The same analysis technique revealed that G178 (#470 48T44),

and 16D (#336 416T3), illustrated in Fig. 3a, b, as well as mP16
(#294 48T16), shown in Fig. 2 in ref. 55, contained more than 47%
of diamond/lonsdaleite tiles (see Section S5 in the SI). The newly
discovered P1-16d and P1-12 superhard species that are shown in
Fig. 3c, d contained 61.6 and 33.7% diamond/lonsdaleite,
respectively, along with tiles found in mC12 (#147, 42T112) and
oC16-I (#175, 43T84), respectively. The mC12 and oC16-I phases
have previously been predicted to be superhard,57 and herein
their HML

v;Teter values were computed to be somewhat lower than
that of diamond, 72.6 and 73.5 GPa, respectively. Thus, the newly
predicted species that are estimated to be at least as hard as
diamond contain a mixture of tiles found in diamond, lonsdaleite,
or other superhard phases.
The first superhard phase that did not contain diamond or

lonsdaleite, P1-16d, is shown in Fig. 3e. It is very asymmetric and
appears close to amorphous, or disordered, with 16 different atom
types. Indeed, it has been shown that disorder in a material can
enhance its hardness.7 The topological analysis further revealed
that systems with sp2 hybridized carbon atoms that had an HML

v;Teter
> 70 GPa contained a high percentage of diamond and/or
lonsdaleite, at least 40%. They are illustrated in Fig. 3f–h.
Finally, we mention some classic cases where the microhard-

ness models have failed, and illustrate that even for these difficult
systems our simple approach yields results that are sufficiently
accurate to guide a CSP search. T-carbon (#33, dia-a) is a
hypothetical carbon allotrope58 whose prediction prompted
scrutiny of the various computational descriptors of hardness.
The Gao9 and SV10 microhardness models yielded Vickers
hardnesses of 61.1 GPa and 40.5 GPa, respectfully, but it was
unclear why such a porous structure with a highly anisotropic
distribution of the sp3-like C–C bonds should be superhard. The

macroscopic Chen model yielded results that were more in-line
with physical reasoning, Hv,Chen= 5.6 GPa.59 The failure of the Gao
and SV models to accurately predict the hardness was attributed
to the fact that they both assume uniformly distributed bonds.
Herein, we find HML

v;Teter/H
AEL
v;Teter ¼ 8:7=7:0 GPa for T-carbon, which is

a reasonable estimate. Layered van der Waals bonded systems
such as graphite have also proven to be challenging for the
microhardness models. For example, the Li model11 predicts a
hardness of 57.4 GPa for graphite,13 whereas experimental
measurements yield <1 GPa.60 The value we calculate for a
graphite structure that was optimized with Grimme’s D3 disper-
sion correction, 27.8 GPa, is too high for a quantitative estimate.
However, the fitness of structures with such a small Vickers
hardness would be quite low, and it is unlikely that any of them
would be present in the pool in the final stages of an EA search.
Herein, 62.5% of the structures whose energy was below
−8.80 eV/atom had an HML

v;Teter greater than 40 GPa, confirming
the preferential exploration of the PES of hard structures, which
can further be tuned by adjusting the weight in the relation used
to determine fitness, Eq. (6).
In the past, a priori crystal structure prediction (CSP) algorithms

designed to pinpoint novel superhard phases have estimated a
structure’s hardness using microscopic models. Macroscopic
hardness models overcome these limitations, but they depend
upon elastic properties that are expensive to calculate from first
principles.
We have shown that the Vickers hardnesses, Hv, of a wide range

of materials computed via the Teter, Chen and Tian macroscopic
models along with the bulk and/or shear moduli calculated using
AFLOW-AEL agree well with experiment. Moreover, the Hv

calculated using the moduli obtained via a ML model that was
trained on the AFLOW repository are in excellent agreement with
the AFLOW-AEL results. Because the ML based values can be
computed quickly given only a crystal’s structure, it is possible to
employ them to determine fitness in a CSP search. This
methodology has been implemented in the XTALOPT evolutionary
algorithm, which can now calculate an individual’s probability for
procreation using both the Vickers hardness and the energy/
enthalpy, to accelerate the search for hard and stable species.
The method was applied towards the carbon system. In

addition to finding 36 known phases, 43 dynamically stable
superhard individuals that have not been reported previously
were identified. Their structures were analyzed using a topological
analysis, which showed that all but one of the newly predicted
phases with HML

v;Teter gt; 70 GPa were comprised of a substantial
fraction of diamond and/or lonsdaleite. The other superhard
phase was close to amorphous or disordered. We expect that in
the future CSP algorithms will become increasingly coupled with
ML derived values to predict materials with desired properties.

METHODS
All of the calculations were carried out using density functional theory as
implemented within the Vienna ab initio Simulation Package (VASP)61

coupled with the Perdew, Burke and Ernzerhof (PBE) functional,62 and the
projector augmented wave (PAW) method.63

Detailed computational settings for the AFLOW-AEL29 calculations used
to determine the elastic properties are described in ref. 64. A set of 4
normal and shear deformations (2 compressive and 2 expansive) are
applied in each independent direction (1 to 3 depending on the structure’s
symmetry) to the fully relaxed structure of a given compound. The ionic
positions are optimized while keeping the cell size and shape fixed, and
the stress tensors for each deformed structure are calculated. The resulting
stress-strain data is fitted to obtain the elastic constants in the form of the
symmetric 6 × 6 elastic stiffness tensor (Voigt notation). The bulk and shear
moduli are calculated from elastic constants as described in ref. 22.
The EA searches were carried out using XTALOPT version r1234 on unit

cells containing 8, 12, 16, and 20 formula units per primitive cell, and a
total of 5624 structures were generated. These cell sizes were chosen
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P-1-16c
71.3 GPa
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G178(48T44)
78.3 GPa
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Fig. 3 a, b Previously known (see Table 2), and (c–h) newly predicted (see Table 3) superhard phases. The computed HML
v;Teter are provided. The

cages colored in blue are structurally related to diamond (dia), and the cages colored in yellow and green are structurally related to
lonsdaleite (lon). The arrows in (f–h) point towards the sp2 carbons
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because they are able to predict phases with 1–6, 8, 10, 12, 16, and 20
atoms in the primitive cell, and because refs. 12,13 considered primitive cells
with up to 24 carbon atoms. Tests showed that the likelihood of predicting
superhard individuals increased when the initial volumes of the generated
crystals were constrained to be about the same as that of diamond. The
first generation was constructed using the RandSpg method,43 and
duplicates were removed from the breeding pool via the XtalComp
algorithm.42 The spacegroups of the predicted superhard phases were
determined using AFLOW-SYM,65 and their structures were analyzed via
the tiling approach as implemented in the ToposPro package.66

The carbon 2s22p2 electrons were treated as valence, and the core states
were described using the PAW method with an energy cutoff of 500 eV in
the structure searches, and 600 eV otherwise. Γ-centered Monkhorst-Pack k-
meshes were employed where the number of divisions along each reciprocal
lattice vector was chosen such that the product of this number with the real
lattice constant was 25 Å for the final step in the EA searches, 40 Å for the
phonon calculations, and 50 Å for the final optimizations and equation of
state calculations. Crystals that satisfied the hardness and stability criteria
described in the section “Applications to carbon” were optimized so that all
forces were smaller than 10−5 eV/Å. Phonon calculations were carried out
using AFLOW-APL (Automatic Phonon Library) in conjunction with VASP.17

APL uses the finite displacement method to calculate the phonon dispersion.
Supercells are generated with displaced atoms, and the interatomic forces
are calculated using VASP. APL uses these forces to calculate the interatomic
force constants and generate the dynamical matrix, which is diagonalized to
obtain the phonon eigenmodes and dispersions.
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