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ABSTRACT: As the proliferation of high-throughput approaches in materials science is
increasing the wealth of data in the field, the gap between accumulated-information and derived-
knowledge widens. We address the issue of scientific discovery in materials databases by
introducing novel analytical approaches based on structural and electronic materials fingerprints.
The framework is employed to (i) query large databases of materials using similarity concepts,
(ii) map the connectivity of materials space (i.e., as a materials cartograms) for rapidly
identifying regions with unique organizations/properties, and (iii) develop predictive
Quantitative Materials Structure−Property Relationship models for guiding materials design.
In this study, we test these fingerprints by seeking target material properties. As a quantitative
example, we model the critical temperatures of known superconductors. Our novel materials
fingerprinting and materials cartography approaches contribute to the emerging field of materials informatics by enabling
effective computational tools to analyze, visualize, model, and design new materials.

■ INTRODUCTION

Designing materials with desired physical and chemical
properties is recognized as an outstanding challenge in
materials research.1−3 Material properties directly depend on
a large number of key variables, often making the property
prediction complex. These variables include constitutive
elements, crystal forms, and geometrical and electronic
characteristics; among others. The rapid growth of materials
research has led to the accumulation of vast amounts of data.
For example, the Inorganic Crystal Structure Database (ICSD)
includes more than 170 000 entries.4 Experimental data are also
included in other databases, such as MatWeb5 and MatBase.6 In
addition, there are several large databases such as AFLOWL-
IB,7,8 Materials Project,9 and the Harvard Clean Energy
Project10,11 that contain thousands of unique materials and
their theoretically calculated properties. These properties
include electronic structure profiles estimated with quantum
mechanical methods. The latter databases have great potential
to serve as a source of novel functional materials. Promising
candidates from these databases may in turn be selected for
experimental confirmation using rational design approaches.12

The rapidly growing compendium of experimental and
theoretical materials data offers a unique opportunity for
scientific discovery in materials databases. Specialized data
mining and data visualization methods are being developed
within the nascent field of materials informatics.1−3,13−16

Similar approaches have been extensively used in cheminfor-
matics with resounding success. For example, in many cases,
these approaches have served to help identify and design small

organic molecules with desired biological activity and accept-
able environmental/human-health safety profiles.17−20 Applica-
tion of cheminformatics approaches to materials science would
allow researchers to (i) define, visualize, and navigate through
the materials space, (ii) analyze and model structural and
electronic characteristics of materials with regard to a particular
physical or chemical property, and (iii) employ predictive
materials informatics models to forecast the experimental
properties of de novo designed or untested materials. Thus,
rational design approaches in materials science constitute a
rapidly growing field.14−16,21−26

Herein, we introduce a novel materials fingerprinting
approach. We combine this with graph theory, similarity
searches, and machine learning algorithms. This enables the
unique characterization, comparison, visualization, and design
of materials. We introduce the concept and describe the
development of materials fingerprints that encode materials’
band structures, density of states (DOS), crystallographic, and
constitutional information. We employ materials fingerprints to
visualize this territory via advancing the new concept of
materials cartography. We show this technology identifies
clusters of specific groups of materials with similar properties.
Finally, we develop Quantitative Materials Structure−Property
Relationship (QMSPR) models that rely on materials finger-
prints. We then employ these models to discover novel
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materials with desired properties that lurk within the materials
databases.

■ METHODS
AFLOWLIB Library and Data. AFLOWLIB is a database of

density functional theory (DFT) calculations managed by the software
package AFLOW.27,28 At the time of the study, the AFLOWLIB
database included the results of calculations characterizing over 20000
crystals, but has since grown to include 50000 entriesrepresenting
about a third of the contents of the ICSD.4 Of the characterized
systems, roughly half are metallic and half are insulating. AFLOW
leverages the VASP Package29 to calculate the total energy of a given
crystal structure with PAW pseudopotentials30 and PBE31 exchange-
correlation functional. The entries of the repositories have been
described previously.7,28,32

Data set of Superconducting Materials. We have compiled
experimental data for superconductivity critical temperatures Tc for
more than 700 records from the Handbook of Superconductivity33 and
the CRC Handbook of Chemistry and Physics,34 as well as the
SuperCon Database.35 As we have shown recently,36 data curation is a
necessary step for any Quantitative Structure-Property Relationship
(QSPR) modeling. In the compiled data set, several Tc values have
been measured under strained conditions, such as different pressures
and magnetic fields. We have only kept records taken under standard
pressure and with no external magnetic fields. For materials with
variations in reported Tc values in excess of 4 K, original references
were revisited and records have been discarded when no reliable
information was available. Tc values with a variation of less than 3 K
have been averaged. Of the remaining 465 materials (Tc range of 0.1−
133 K), most records show a variability in Tc of ±1 K between
different sources. Such a level of variability would be extremely
influential in materials with low Tc (Tc < 1 K) because we have used
the decimal logarithm of experimentally measured critical temperature
(log(Tc)) as our target property.
To appropriately capture information inherent to materials over the

full range of Tc, we have constructed two data sets for the development
of three models. The continuous model serves to predict Tc and
utilizes records excluding materials with Tc values less than 2 K. This

data set consists of 295 unique materials with a log(Tc) range of 0.30−
2.12. The classification model serves to predict the position of Tc

(above/below) with respect to the threshold Tthr (unbiasedly set to 20
K as observed in Figure 4e, see Results and Discussion section). It
utilizes records incorporating the aforementioned excluded materials,
as well as lanthanum cuprate (La2CuO4, ICSD No. 19003).
Lanthanum cuprate had been previously discarded for high variability
(Tc = 21−39 K), but now satisfies the classification criteria. This data
set consists of 464 materials (29 with Tc > Tthr and 435 with Tc ≤
Tthr). Finally, the geometrical model serves to identify structural
components that most influence Tc. It utilizes the same data set as the
continuous model.

Materials Fingerprints. Following the central paradigms of
structure−property relationships, we assume that (i) properties of
materials are a direct function of their structure and (ii) materials with
similar structures (as determined by constitutional, topological, spatial,
and electronic characteristics) are likely to have similar physical and
chemical properties.

Thus, encoding material characteristics in the form of numerical
arrays of descriptors,2,15 or f ingerprints,37 enables the use of classical
cheminformatics and machine-learning approaches to mine, visualize,
and model any set of materials. We have encoded the electronic
structure diagram for each material as two distinct types of arrays
(Figure 1): a symmetry-dependent f ingerprint (band structure based B-
fingerprint) and a symmetry-independent f ingerprint (density of state
based D-fingerprint).

B-Fingerprint. Along every special high-symmetry point of the
Brillouin zone (BZ), the energy diagram has been discretized into 32
bins to serve as our fingerprint array. Each BZ has a unique set of high-
symmetry points.7 The comparison set of high-symmetry points
belonging to a single BZ type is considered symmetry-dependent. To
name a few examples, the Brillouin zone path of a cubic lattice
(ΓXMΓRX | MR) is encoded with just four points (Γ, M, R, X), giving
rise to a fingerprint array of length 128. The body-centered
orthorhombic lattice is more complex7,8 (ΓXLTWRX1ZΓYSW|L1Y|
Y1Z) and is represented by 13 points (Γ, L, L1, L2, R, S, T, W, X, X1, Y,
Y1, Z), giving a fingerprint array of length 416. Conversely, the
comparison of identical k-points not specifically belonging to any BZ is

Figure 1. Construction of materials fingerprints from the band structure and the density of states. For simplicity, we illustrate the idea of B-
fingerprints with only 8 bins.
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always possible when only restricted to Γ. Consequently, we limit our
models to Γ point B-fingerprint in the present work.
D-Fingerprint. A similar approach can be taken for the DOS

diagrams, which are sampled in 256 bins (from min to max) and the
magnitude of each bin is discretized in 32 bits. Therefore, the D-
fingerprint is a total of 1024 bytes. Owing to the complexity and
limitations of the symmetry-dependent B-fingerprints, we have only
generated symmetry-independent D-fingerprints. The length of these
fingerprints is tunable depending on the objects, applications, and
other factors. We have carefully designed the domain space and length
of these fingerprints to avoid the issues of enhancing boundary effects
or discarding important features.
SiRMS Descriptors for Materials. To characterize the structure of

materials from several different perspectives, we have developed
descriptors similar to those used for small organic molecules that can
reflect their compositional, topological, and spatial (stereochemical)
characteristics. Classical cheminformatics tools can only handle small
organic molecules. Therefore, we have modified the Simplex (SiRMS)
approach38 based on our experience with mixtures39,40 in order to
make this method suitable for computing descriptors for materials.
The SiRMS approach38 characterizes small organic molecules by

splitting them into multiple molecular fragments called simplexes.
Simplexes are tetratomic fragments of fixed composition (1D),
topology (2D), and chirality and symmetry (3D). The occurrences
of each of these fragments in a given compound are then counted. As a
result, each molecule of a given data set can be characterized by its
SiRMS fragment profiles. These profiles take into account atom types,
connectivity, etc.38 Here, we have adapted the SiRMS approach to
describe materials with their fragmental compositions.
Every material is represented according to the structure of its crystal

unit cell (Figure 2). Computing SiRMS descriptors for materials is
equivalent to the computation of SiRMS fragments for nonbonded
molecular mixtures. Bounded simplexes describe only a single
component of the mixture. Unbounded simplexes could either belong
to a single component, or could span up to four components of the
unit cell. A special label is used during descriptor generation to
distinguish “mixture” (belonging to different molecular moieties)
simplexes from those incorporating elements from a single
compound.40

Thus, the structure of every material is characterized by both
bounded and unbounded SiRMS descriptors as illustrated in Figure 2.
The descriptor value of a given simplex fragment is equal to the
number of its occurrences in the system. In the case of materials, this
value has been summed throughout all the constituents of a system;
taking into account their stoichiometric ratios and crystal lattice (see
Figure 2). “Mixture” descriptors are weighted according to the smallest
stoichiometric ratio of constituents within this mixture, and added
throughout all the mixtures in a system. Atoms in simplexes are
differentiated according to their type (element) and partial charge. For
the latter, atoms are divided into six groups corresponding to their

partial charge: A ≤ −2 < B ≤ −1 < C ≤ 0 < D ≤ 1 < E ≤ 2 < F. In
addition, we have developed a special differentiation of atoms in
simplexes to account for their groups on the periodic table. That is, all
elements belonging to the same group are encoded by the same
symbol.

Network Representation (Material Cartograms). To represent
the library of materials as a network, we considered each material,
encoded by its fingerprint, as a node. Edges exist between nodes with
similarities above certain thresholds. In this study, we use fingerprint-
based Tanimoto similarity and a threshold S = 0.7. This network
representation of materials is defined as the graph G(V,E), where V=
{ν1|ν2∈L} and E = {(ν1,ν2)|sim(ν1,ν2) ≥ T}. Here, L denotes a
materials library, sim(ν1,ν2) denotes a similarity between materials ν1
and ν2, and T denotes a similarity threshold.

To examine if the materials networks are scale-free, we analyzed the
degree distributions of the networks. Networks are considered scale-
free if the distribution of vertex degrees of the nodes follows the power
law: p(x) = kx−α where k is the normalization constant, and α is the
exponent. The materials networks have been visualized using the
Gephi package.41 The ForceAtlas 2 algorithm,42 a type of force-
directed layout algorithm, has been used for the graph layout. A force-
directed layout algorithm considers a force between any two nodes,
and minimizes the “energy” of the system by moving the nodes and
changing the forces between them. The algorithm guarantees that the
topological similarity among nodes determines their vicinity, leading to
accurate and visually informative representations of the materials
space.

■ RESULTS AND DISCUSSION

Similarity Search in the Materials Space. In the first
phase of this study, the optimized geometries, symmetries, band
structures, and densities of states available in the AFLOWLIB
consortium databases were converted into fingerprints, or
arrays of numbers.
We encoded the electronic structure diagram for each

material as two distinct types of fingerprints (Figure 1): band
structure symmetry-dependent fingerprints (B-fingerprints), and
density of states symmetry-independent fingerprints (D-finger-
prints). The B-fingerprint is defined as a collated digitalized
histogram of energy eigenvalues sampled at the high-symmetry
reciprocal points with 32 bins. The D-fingerprint is a string
containing 256 4-byte real numbers, each characterizing the
strength of the DOS in one of the 256 bins dividing the [−10,
10] eV interval. More details are in the Methods section.
This unique, condensed representation of materials enabled

the use of cheminformatics methods, such as similarity
searches, to retrieve materials with similar properties but

Figure 2. Generation of SiRMS descriptors for materials.
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different compositions from the AFLOWLIB database. As an
added benefit, our similarity search can also quickly find
duplicate records. For example, we have identified several
BaTiO3 records with identical fingerprints (ICSD Nos. 15453,
27970, 6102, and 27965 in the AFLOWLIB database). Thus,
fingerprint representation afforded rapid identification of
duplicates, which is the standard first step in our chem-
informatics data curation workflow.36 It is well-known that
standard DFT has severe limitations in the description of
excited states and needs to be substituted with more advanced
approaches to characterize semiconductors and insulators.43−47

However, there is a general trend of DFT errors being
comparable in similar classes of systems. These errors may thus
be considered “systematic”, and are irrelevant when one seeks
only similarities between materials.
The first test case is gallium arsenide, GaAs (ICSD No.

41674), a very important material for electronics48 in the
AFLOWLIB database. GaAs is taken as the reference material,
and the remaining 20000+ materials from the AFLOWLIB
database are taken as the virtual screening library. The pairwise
similarity between GaAs and any of the materials represented
by our D-fingerprints is computed using the Tanimoto
similarity coefficient (S).49 The top five materials (GaP, Si,
SnP, GeAs, InTe) retrieved show very high similarity (S > 0.8)
to GaAs, and all five are known to be semiconductor
materials.34,50,51

In addition, we have searched the AFLOWLIB database for
materials similar to barium titanate (BaTiO3) with the
perovskite structure (ICSD No. 15453) using B-fingerprints.
BaTiO3 is widely used as a ferroelectric ceramic or piezo-
electric.52 Out of the six most similar materials with S > 0.8, five
(BiOBr, SrZrO3, BaZrO3, KTaO3 and KNbO3) are well-known
for their optical properties.53 The remaining material, cubic
YbSe (ICSD No. 33675), is largely unexplored. One can
therefore formulate a testable hypothesis suggesting that this
material may be ferroelectric or piezoelectric.
We also investigated the challenging case of topological

insulators. They form a rare group of insulating materials with
conducting surface-segregated states (or interfaces)54 arising
from a combination of spin−orbit coupling and time-reversal
symmetry.55 Although DFT calculations conducted for
materials in AFLOWLIB do not incorporate spin−orbit
coupling for the most part,54 various topological insulators
showed exceptionally high band-structure similarities, a
manifesto for B-fingerprints. The two materials most similar
to Sb2Te3

55 (based on B-fingerprints) with S > 0.9 were
Bi2Te3

56,57 and Sb2Te2Se.
58 Five out of six materials most

similar to Bi2Te2Se
58,59 are also known topological insulators:

Bi2Te2S, Bi2Te3, Sb2Te2Se, GeBi2Te4,
58 and Sb2Se2Te.

54,60

These examples demonstrate proof of concept and illustrate
the power of simple yet uncommon fingerprint-based similarity
searches for rapid and effective identification of materials with

Figure 3. Materials cartograms with D- (top) and B-fingerprint network representations (bottom). (a) D-fingerprint network representation of
materials. Materials are colored according to the number of atoms per unit cell. Regions corresponding to pure elements, binary, ternary, and
quaternary compounds are outlined. (b) Distribution of connectivity within the network. (c) Mapping band gaps of materials. Points colored in deep
blue are metals; insulators are colored according to the band gap value. Four large communities are outlined. (d) Mapping the superconductivity
critical temperature, Tc, with relevant regions outlined.
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similar properties in large databases. They also illuminate the
intricate link between the structure and properties of materials
by demonstrating that similar materials (as defined by their
fingerprint similarity) have similar properties (such as being
ferroelectric or insulators). This observation sets the stage for
building and exploring QMSPR models, as discussed in the
following sections.
Visualizing and Exploring the Materials Space. The use

of fingerprint representation and similarity concepts led us to
develop the materials network. Compounds are mapped as
nodes. We use the force directed graph drawing algorithm61 in
which positions of the compounds are initially taken randomly.
There is a force between the nodes: a repulsive Coulomb
component and an optional attractive contribution with a
spring constant equal to the Tanimoto coefficient between D-
fingerprints (effective when S ≥ 0.7). Two nodes are connected
only when the coefficient is at or above the threshold. The
model is equilibrated through a series of heating and quenching
steps. Figure 3a shows the result in which we add Bezier-curved
lines depicting regions of accumulation. We shall refer to this
approach to visualizing and analyzing materials and their
properties as materials cartography.
The network shown in Figure 3a is colored according to

overall complexity. Pure systems, 79% of the total 246 unary
nodes, are confined in a small, enclosed region. Binary nodes
cover more configurational space, and 82% of the 3700+
binaries lie in a compact region. Ternaries are scattered. They
mostly populate the center of the space (91% of the 5300+
ternaries). Quaternaries and beyond are located at the top part
of the network (92% of the 1080 nodes). This region is the
most distant from that of unary nodes, which tends to be
disconnected from the others. Indeed, overlap between binaries
and ternaries is substantial. The diversification of electronic
properties and thickness of the compact envelope grows with
structural complexity. Orphans are defined as nodes with a very
low degree of connectivity [only the vertices (materials)
connected by edges are shown (∼39% of the database)].
Interestingly, of the 200 materials with connectivity smaller
than 12, most are La-based (36 bimetallic and 126 polimetallic)
or Ce-based (10 nodes).
The degree of connectivity is illustrated in Figure 3b. The

panel indicates the log−log distribution of connectivity across

the sample set. The red and blue points measure the D-
fingerprints (Figure 3a) and B-fingerprints connectivity (Figure
3c), respectively. Table 1 in the Supporting Information
contains relevant statistical information about the cartograms.
Although the power law distribution of Figure 3b is typical of
scale-free networks and similar to many networks examined in
cheminformatics and bioinformatics,62−64 in our case, con-
nectivity differs. In previous examples,62−64 most of the nodes
have only a few connections; with a small minority being highly
connected to a small set of “hubs”.65,66 In contrast, the
AFLOWLIB network is highly heterogeneous: most of the
hubs’ materials are concentrated along the long, narrow belt
along the middle of the network. The top 200 nodes (ranked
by connectivity) are represented by 83 polymetallics (CoCrSi,
Al2Fe3Si3, Al8Cr4Y, etc.), 102 bimetallics (Al3Mo, As3W2,
FeZn13, etc.), 14 common binary compounds (GeS, AsIn,
etc.), and boron (ICSD No. 165132). This is not entirely
surprising, since these materials are well studied and represent
the lion’s share of the ICSD database. Al3FeSi2 (ICSD No.
79710), an uncommonly used material, has the highest
connectivity of 946. Meanwhile, complex ceramics and exotic
materials are relatively disconnected.
A second network, built with B-fingerprints, is illustrated in

Figure 3c. While this network preserves most of the topological
features described in the D-fingerprint case (Figure 3a), critical
distinctions appear. The B-fingerprint network separates metals
from insulators. Clustering and subsequent community analyses
show four large groups of materials. Group-A (∼3000
materials) consists predominately of insulating compounds
(63%) and semiconductors (10%). Group-B distinctly consists
of compounds with polymetallic character (70% of ∼2500
materials). In contrast, Group-C includes ∼500 zero band gap
materials with nonmetal atoms, including halogenides, carbides,
silicides, etc. Lastly, Group-D has a mixed character with ∼300
small band gap (below 1.5 eV) materials; and ∼500 semimetals
and semiconductors.
Lithium scandium diphosphate, LiScP2O7 (ICSD No.

91496), has the highest connectivity of 746 for the B-
fingerprint network. Very highly connected materials are nearly
evenly distributed between Groups-A and -B, forming dense
clusters within their centers. As in the case of the D-fingerprint
network, the connectivity distribution follows a power law

Figure 4. Comparison high-low Tc aligned band structures and Tc predictions. (a) Band structure for Ba2Ca2Cu3HgO8, Tc = 133 K. (b) Band
structure of SrCuO2 (ICSD No. 16217, Tc = 91 K).74 (c) Aligned B-fingerprints for the 15 materials with the highest and lowest Tc. (d) Band
structure of Nb2Se3 (ICSD No. 42981, Tc = 0.4 K). (e) Plot of the predicted vs experimental critical temperatures for the continuous model. Materials
are color-coded according to the classif ication model: solid/open green (red) circles indicate correct/incorrect predictions in Tc > Tthr (Tc ≤ Tthr),
respectively.
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(Figure 3b, see Table 1 in the Supporting Information for
additional statistics); indicating that this is a scale-free network.
To illustrate one possible application of the materials

networks, we chose superconductivityone of the most elusive
challenges in solid-state physics. We have compiled exper-
imental data for 295 stoichiometric superconductors that were
also available in AFLOWLIB. All materials in the data set are
characterized with the fingerprints specified in the Methods
section. The data set includes both prominently high
temperature superconducting materials such as layered
cuprates, ferropnictides, iron arsenides-122, MgB2; as well as
more conventional compounds such as A15, ternary pnictides,
etc. Our model does not consider the effect of phonons, which
play a dominant role in many superconductors.67 High-
throughput parametrization of phonon spectra is still in its
infancy,68 and only recently have vibrational descriptors been
adapted to large databases.69 We envision that future
development of vibrational fingerprints following these guide-
lines will capture similarities between known, predicted, and
verified superconductors (i.e., MgB2 vs LiB2

70,71 and MgB2 vs
Fe−B compounds72,73).
All materials are identified and marked on the B-fingerprint

network, and are color-coded according to their critical
temperature, Tc (Figure 3d). All high-Tc superconductors are
localized in a relatively compact region. The distribution is
centered on a tight group of Ba2Cu3X O7 compounds (the so-
called Y123, where X = lanthanides). The materials with the
two highest Tc values in our set are Ba2Ca2Cu3HgO8 (ICSD
No. 75730, Tc = 133 K) and Ba2CaCu2HgO6 (ICSD No.
75725, Tc = 125 K). Their close grouping manifested a
significant superconductivity hot-spot of materials with similar
fingerprints. We aligned the B-fingerprints for 15 super-
conductors with the highest Tc values in Figure 4c.
All of the top 15 high Tc superconductors are layered

cuprates, which have dominated high Tc superconductor
research since 1986.75 These compounds are categorized as
Charge-Transfer Mott Insulators (CTMI).76 There are three
distinct bands that are conserved for these structures around
−6, −1, and 4 eV relative to the Fermi energy at Γ (within the
simple DFT+U description available in AFLOWLIB, Figure
4c). These features are consistent with the three-band
Hubbard-like picture characteristic of CTMIs.77,78

Meanwhile, the fingerprint distribution for 15 materials with
the lowest Tc was random (Figure 4c). The importance of band
structure features in superconductivity has long been
recognized.79−81 Thus, materials cartography based on the B-
fingerprint network allows us to visualize this phenomenon
concisely.
Predictive QMSPR Modeling. We developed QMSPR

models (continuous,82 classification, and structural) to compute
superconducting properties of materials from their structural
characteristics. To achieve this objective, we compiled two
superconductivity data sets consisting of (i) 295 materials with
continuous Tc values ranging from 2 to 133 K and (ii) 464
materials with binary Tc values. The models were generated
with Random Forest (RF)83 and Partial Least Squares (PLS)84

techniques. These used both B- and D-fingerprints, as well as
the Simplex (SiRMS)38 descriptors. These fingerprints were
adapted for materials modeling for the first time in this study
(see Methods section). Additionally, we incorporated atomic
descriptors that differentiate by element, charge, and group
within the periodic table. Statistical characteristics for all 464

materials used for the QMSPR analysis are reported in the
Supporting Information (Tables 2−4).
Attempts to develop QMSPR models using B- and D-

fingerprints for both data sets were not satisfactory, indicating
that our fingerprints, while effective in qualitative clustering, do
not contain enough information for quantitatively predicting
target properties (QMSPR model acceptance criteria has been
discussed previously85). Thus, we employed more sophisticated
chemical fragment descriptors, such as SiRMS,38 and adapted
them for materials modeling (see Methods section).

Continuous Model. We constructed a continuous model
which serves to predict the value of Tc with a consensus RF-
and PLS-SiRMS approach. It has a cross-validation determi-
nation coefficient of Q2 = 0.66 (5-fold external CV; see Table 2
of the Supporting Information). Figure 4e shows predicted
versus experimental Tc values for the continuous model: all
materials having log(Tc) ≤ 1.3 were scattered, but within the
correct range. Interestingly, we notice that systems with log(Tc)
≥ 1.3 received higher accuracy, with the exceptions of MgB2
(ICSD No. 26675), Nb3Ge (ICSD No. 26573), Cu1Nd2O4
(ICSD No. 4203), As2Fe2Sr (ICSD No. 163208), Ba2CuHgO4
(ICSD No. 75720), and ClHfN (ICSD No. 87795) (all highly
underestimated). Not surprisingly MgB2

86 is an outlier in our
statistics. This is in agreement with the fact that to date no
superconductor with an electronic structure similar to MgB2
has been found.

Classification Model. By observing the existence of the
threshold Tthr = 20 K (log(Tthr) = 1.3), we developed a
classif ication model. It is based on the same RF-SiRMS
technique, but it is strictly used to predict the position of Tc
with respect to the threshold, above or below. The classification
model has a balanced accuracy (BA) of 0.97 with 5-fold
external CV analysis. The type of points in Figure 4e illustrates
the classification model outcome: solid/open green (red)
circles for correct/incorrect predictions in Tc > Tthr (Tc ≤ Tthr),
respectively.
For Tc ≤ Tthr and Tc > Tthr, accuracies of prediction were

98% and 90% (cumulative 94%). (Figure 4e, see Table 3 in the
Supporting Information for additional statistics). Among the
464 materials, 10 systems with experimental Tc > Tthr were
predicted to have Tc ≤ Tthr) [FeLaAsO (ICSD No. 163496),
AsFeO3Sr2V (ICSD No. 165984), As2EuFe2 (ICSD No.
163210), As2Fe2Sr, CuNd2O4 (ICSD No. 86754), As2BaFe2
(ICSD No. 166018), MgB2, ClHfN, La2CuO4, and Nb3Ge].
Only two with experimental Tc ≤ Tthr were predicted with Tc >
Tthr (AsFeLi (ICSD No. 168206), As2CaFe2 (ICSD No.
166016)). Owing to the spread around the threshold,
additional information about borates and Fe−As compounds
is required for proper training of the learning algorithm.
In the past, it has been shown that QSAR approaches can be

used for the detection of mis-annotated chemical compounds, a
critical step in data curation.36 We have employed a similar
approach here. In our models, three materials, ReB2 (ICSD No.
23871), Li2Pd3B (ICSD No. 84931), and La2CuO4, were
significantly mispredicted. More careful examination of the data
revealed that Tc’s of ReB2 and Li2Pd3B were incorrectly
extracted from literature. We also found that La2CuO4 had the
largest variation of reported values within the data set.
Therefore, it was excluded from the regression. This approach
illustrates that QMSPR modeling should be automatically
implemented to reduce and correct erroneous entries.

Structural Model. We also developed a structural model
meant to capture the geometrical features that most influence
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Tc. It employs SiRMS descriptors, PLS approaches, and 5-fold
external cross-validation. The predictive performance of this
model (Q2 = 0.61) is comparable to that of the SiRMS-based
RF model (see Table 2 in Supporting Information for
additional statistics). The top 10 statistically significant
geometrical fragments and their contributions to Tc variations
are shown in Table 4 of the Supporting Information. All
descriptor contributions were converted to atomic contribu-
tions (details discussed previously87) and related to material
structures. Examples of unit cell structures for pairs of similar
materials with different Tc values were color-coded according to
atomic contributions to Tc and are shown in Figure 5 (green for
Tc↑, red for Tc↓, and gray for neutral).
Examples of fragments for materials having Tc > Tthr

[Ba2Ca2Cu3HgO8, ICSD No. 75730, log(Tc) = 2.12] and Tc

≤ Tthr [As2Ni2O6Sc2Sr4, ICSD No. 180270, log(Tc) = 0.44] are
shown in Figure 5 parts a and b, respectively. They indicate that
individual atom contributions are nonlocal as they strongly
depend upon the atomic environment (Figure 5c−h), for
example, Mo6PbS8 [ICSD No. 644102, log(Tc) = 1.13] and
Mo6NdS8 [ICSD No. 603458, log(Tc) = 0.54] differ by a
substitution, yet the difference in Tc is substantial. Furthermore,
substitution of Nd for Pb affects contributions to the target
property from all the remaining atoms in the unit cell (Figure
5c,d). The same observation holds for Li2Pd3B [ICSD No.
84931, log(Tc) = 0.89] and Li2Pt3B [ICSD No. 84932, log(Tc)
= 0.49] Figure 5e,f; as well as FeLaAsO [ICSD No. 163496,
log(Tc) = 1.32] and FeLaPO [ICSD No. 162724, log(Tc) =
0.82] Figure 5g,h.

■ CONCLUSION

With high-throughput approaches in materials science increas-
ing the data-driven content of the field, the gap between
accumulated-information and derived knowledge widens. The
issue can be overcome by adapting the data-analysis approaches
developed during the past decade for chem- and bioinformatics.
Our study gives an example of this. We introduce novel

materials fingerprint descriptors that lead to the generation of
networks called materials cartograms: nodes represent com-
pounds; connections represent similarities. The representation
can identify regions with distinct physical and chemical
properties, the key step in searching for interesting, yet
unknown compounds.
Starting from atomic-compositions, bond-topologies, struc-

ture-geometries, and electronic properties of materials publicly
available in the AFLOWLIB repository, we have introduced
cheminformatics models leveraging novel materials fingerprints.
Within our formalism, simple band-structure and DOS
fingerprints are adequate to locate metals, semiconductors,
topological insulators, piezoelectrics, and superconductors.
More complex QMSPR modeling38 are used to tackle
qualitative and quantitative values of superconducting critical
temperature and geometrical features helping/hindering
criticality.38

In summary, the fingerprinting cartography introduced in
this work has demonstrated its utility in an initial set of
problems. This shows the possibility of designing new materials
and gaining insight into the relationship between the structure
and physical properties of materials. Further advances in the
analysis and exploration of databases may become the

Figure 5. Materials color-coded according to atom contributions to log(Tc). Atoms and structural fragments that decrease superconductivity critical
temperatures are colored in red and those enhancing Tc are shown in green. Uninfluential fragments are in gray. (a) Ba2Ca2Cu3HgO8; (b)
As2Ni2O6Sc2Sr4; (c) Mo6PbS8; (d) Mo6NdS8; (e) Li2Pd3B; (f) Li2Pt3B; (g) FeLaAsO; (h) FeLaPO.
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foundation for rationally designing novel compounds with
desired properties.
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Dandekar, T.; Schuster, S. Nature 2000, 407, 651−654.
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