
Computational Materials Science 137 (2017) 362–370
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Editor’s Choice
AFLUX: The LUX materials search API for the AFLOW data repositories
http://dx.doi.org/10.1016/j.commatsci.2017.04.036
0927-0256/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: stefano@duke.edu (S. Curtarolo).
Frisco Rose a, Cormac Toher a, Eric Gossett a, Corey Oses a, Marco Buongiorno Nardelli b,
Marco Fornari c, Stefano Curtarolo a,⇑
aDepartment of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
bDepartment of Physics and Department of Chemistry, University of North Texas, Denton, TX 76203, USA
cDepartment of Physics, Central Michigan University, Mount Pleasant, MI 48858, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 March 2017
Accepted 29 April 2017
Available online 20 June 2017
Automated computational materials science frameworks rapidly generate large quantities of materials
data for accelerated materials design. In order to take advantage of these large databases, users should
have the ability to efficiently search and extract the desired data. Therefore, we have extended the
data-oriented AFLOW-repository Application-Program-Interface (API) (Comput. Mater. Sci. 93, 178
(2014)) to enable programmatic access to search queries. A Uniform Resource Identifier (URI)-based
search API is proposed for the construction of complex queries for remote creation and retrieval of cus-
tomized data sets. It is expected that the new language, AFLUX, from ‘‘Automatic Flow of LUX (light)”, will
enable remote search operations on the AFLOW set of computational materials science data repositories.
In addition, AFLUX facilitates the verification and validation of the data in the AFLOW repositories.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Automated computational materials science frameworks such
as AFLOW [1–7] rapidly generate large quantities of materials data,
which can be used to identify trends, build machine learning mod-
els [8–12], formulate descriptors for synthesizability [13,14] and
ultimately accelerate materials design [15]. The dissemination of
such large quantities of data requires the use of advanced online
databases such as AFLOW [16–18], NoMaD [19], Materials Project
[20], OQMD [21] and AiiDA [22,23] to make the data accessible
in an effective fashion.

The AFLOW data repositories [16–18] currently contain in
excess of 1.6 million materials entries, and over 160 million com-
puted properties which are directly accessible using the existing

AFLOW data REpresentational-State-Transfer Application-Pro-

gram-Interface (REST-API) [18]. The existing data API presents data
effectively, but it does not enable programmatic access to the types
of complex search queries available through the AFLOW online
web portal. In order to address these issues, we have implemented

a Uniform Resource Identifier (URI)-based search API which
enables the construction of complex search queries and allows
for the creation and retrieval of customized data sets.

For large, automatically generated data sets such as those con-
tained in the AFLOW repository, automated verification procedures
for calculation quality is an important issue, since it is impossible
for a user to individually check the calculations for every single

entry in a data set. The Automatic Flow of LUX (light) (AFLUX)-
search API can be used to facilitate such verification checks. It is
possible to include properties which provide information about
calculation quality in the results returned by a search query, and
to filter the results to remove entries which do not fulfill specified
convergence criteria. To facilitate this, the AFLOW data REST-API
has been extended to include additional keywords to expose infor-
mation concerning the calculation settings and convergence, as
listed in Appendix C. This upgraded version of the data API is ter-
med version 1.2 as compared to version 1.0 described in Ref. 18.
Even and odd version numbers correspond to stable and develop-
mental iterations, respectively.

2. AFLUX search API

Access to relational information is typically a highly involved
process that requires specialized knowledge not generally avail-
able or readily attainable by general users. An access mechanism

that exposes the data to human-directed exploration via a graphi-

cal user interface (GUI) is typically limited by the GUI design (as
imagined by the developers), and is practically impossible to access
via programmatic methods. Exposing data via a procedural

approach, such as through the Structured Query Language (SQL),
requires knowledge of both the language in use and the (often
highly convoluted) organization of the underlying data. In order

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2017.04.036&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2017.04.036
mailto:stefano@duke.edu
http://dx.doi.org/10.1016/j.commatsci.2017.04.036
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci

F. Rose et al. / Computational Materials Science 137 (2017) 362–370 363
to address these concerns, we created a domain-agnostic text-
based search API named LUX. LUX is presented in the AFLOW
domain context as AFLUX with the design goals of exposing an
API that is human accessible, logically robust, concise and as lucid
as possible.
2.1. Design specification

The design of this API is driven by the need for a straightforward
and globally accessible representation of the AFLOW search fea-
tures. The feature set should reflect and extend the capabilities
found in the AFLOW online search GUI available at aflow.org. Fur-
ther motivation comes from the attempt to unburden the end user
from needing to understand the intricacies of SQL or a particular
database schema. An additional benefit of eliminating the explicit
representation of the database (DB) schema is that we are free to
optimize the internal DB structure without breaking backwards
compatibility in the AFLUX API. Although LUX is designed to oper-
ate in an origin-agnostic fashion, concessions must be made to
older software stacks that may be unable to create an extended
length URI, and thus LUX strives to balance conciseness with
human readability. As a final consideration, the LUX syntax is
designed to be generally extensible, both to accommodate the
growth of the underlying data and to allow LUX’s application to
an arbitrary data store. The LUX API language construct is superfi-
cially like a C/C++ style subroutine/function call, which we term
the matchbook. The utility of LUX is derived from the fact that
the intra-matchbook restrictions and inter-matchbook declara-
tions are logically related search criteria.
2.2. URI query context

This implementation of the LUX search API uses an internet URI
as the submission layer. In a related effort, the AFLOW data API also
uses a URI to access large data repositories [18]. Whereas in the
data API the path portion of the URI is used to uniquely identify
each material and navigate between materials, the query portion
of the URI in LUX is used to isolate specific data values and dictate
the associated data response format. Therefore, for the LUX API, the
query portion of the URI is best suited to the highly dynamic nature
of LUX’s relational criteria.

The beginning of the query section in the URI is defined by the
presence of the first question mark character ‘‘?” in the URI. The
query section is terminated by either the presence of the fragment
section, indicated by the first octothorpe character ‘‘#”, or by the
end of the URI.

Thus the standards for the query portion of a URI form the foun-
dation of the LUX API.
2.3. Summons syntax

The summons syntax is broken into two segments with URI
query safe characters forming the body of the summons, as shown
in Fig. 1(a). The first portion contains the relational property match
criterion with its respective matching restrictions – this is the
matchbook. The matchbook portion is followed by the direc-

tive portion with its attendant attributes. While there is no a pri-
ori order dependency within the matchbook or the directive,
the matchbook must come entirely before the directive in the
submitted URI, as shown in Fig. 1.

The property matchbook portion is mandatory for a meaningful
data response. In contrast a directive-only summons may return
metadata or an error state, depending on the directive of con-
cern and the manner in which it is summoned.
2.4. Character set

As one of the primary design objectives of LUX is to be human-
readable, the allowed URI characters must be considered in that
context. The URI generic syntax (RFC3986 [24]) defines explicit
restrictions on URI query formation in ABNF notation [25]. We
limit our overt use of percent (pct) encoded characters. Finally, in
order to support a concise summons, we forgo verbose operators
and use single character operators. What follows is a derivation
of the LUX character set based on our design goals and the limita-
tions of the standards that LUX operates under.

From Section 3.4 of Ref. 24 the query section of the URI allows
for the use of the following characters

query ¼ �ðpchar = \=" = \?"Þ
which can be read as follows: allow zero or more of the characters
from the conjunction of the pchar set, the solidus character ‘‘/”, and
the question mark character ‘‘?”, where the ‘‘pchar” character set is
defined in Section 3.4 of Ref. 24 as

pchar ¼ unreserved = pct-encoded = sub-delims = \ : " = \@"

‘‘Unreserved” is defined in Section 2.3 of Ref. 24 as

unreserved ¼ ALPHA = DIGIT = \-" = \:" = \ " = \�"

and ‘‘sub-delims” are defined in Section 2.2 of Ref. 24 as

sub-delims ¼ \!" = \$" = \&" = \0" = \ð" = \Þ" = \�"
= \þ " = \; " = \; " = \ ¼ "

So, in summary, a strict superset of the characters that our syn-
tax may be constructed from is as follows:

ALPHA = DIGIT = \-" = \:" = \ " = \�" = \!" = \$" = \&" = \0"

= \ð" = \Þ" = \�" = \þ " = \;" = \; " = \¼ " = \ : " = \@" = \=" = \?"

However, while this is the latest relevant RFC there are older
protocols implemented by browsers/servers/languages that inter-
fere with the query character set. For instance, RFC1630 and
RFC2396 reserved the plus sign. We attempt to avoid any charac-
ters that may result in an unintended mangling of the query.

2.5. Operator character codex

We are not explicitly limited by any origin standards, such as
HTML5 which only allows unreserved and pct-encoded, as the ori-
gin of the query is application agnostic and only requires the ability
to construct a valid URI. As an aside, it is often possible to work
around the limitation of origin standards by calling lower level
methods in the application stack. In essence, we need only open
a bi-directional communication socket to the LUX API, send an
un-mangled URI with an appropriate query structure to the server,
and accept the returned data set. That said, we want to make the
implementation as easy, unambiguous and unimpeded as possible.
As a first consideration we will avoid the use of ‘‘?”, ‘‘&”, ‘‘+”, ‘‘;” and
‘‘=” in order to avoid confusing arbitrarily handled webserver/cgi/
PHP/Web-Browser/. . . URI parsers. This will also help distinguish
LUX from preconceived end user expectations of other, more sim-
plistic, query based API behaviors. The characters ‘‘.” and ‘‘-” are also
reserved as they are inherent to the definition of a number. Further-
more, we want to use ALPHA/DIGIT as general string/number char-
acters. Lastly ‘‘_” is reserved as it is used in the keyword (AFLOW
Snake Case keywords for instance) identifier amalgamation conven-
tion. This leaves

\�" = \!" = \$" = \0" = \ð" = \Þ" = \�" = \; " = \ : " = \@" = \="

Thus, the LUX operator tokens are defined as shown in Table 1.

http://aflow.org

http://aflowlib.duke.edu/search/API/?<matchbook>,<directives>

Search API Server Query

API/?agl_thermal_conductivity_300K,Egap(6*),paging(-1,20),format(html)

Matchbook Directives

a

b

c

Fig. 1. (a) URI format for LUX search query. Note that the entire matchbookmust be before all of the directives in the query. (b) Example search query for a material to act
as an electrically insulating heat sink, with the materials properties of high thermal conductivity and a band gap exceeding 6 eV. (c) Results returned in HTML format. The best
candidates found are two different structures of BeO.

Table 1
LUX Codex. List of the symbols used to represent logic operations in the LUX Search-
API syntax. Note that three symbols are currently reserved for future use.

Logic
operation

Operator
symbol

Description

BLOCK-NEW (The new set precedence context
BLOCK-END) The end set precedence context
UNARY-MUTE $ The property output suppression operator
UNARY-NOT ! The logical inversion unary operator
UNARY-LOOSE ⁄ The positional loose datum match unary

operator
BINAL-AND , The logical conjunction binary operator/list

separator
BINAL-OR : The logical disjunction binary operator/list

separator
DATUM-STR ’ The explicit string datum context
RESERVED @ Reserved for future use
RESERVED � Reserved for future use
RESERVED / Reserved for future use

364 F. Rose et al. / Computational Materials Science 137 (2017) 362–370
2.6. Properties are reserved words

In addition to the character limitations as defined by the oper-
ator character codex, there exist reserved words. These words fall
into two categories: domain specific (e.g., AFLOW properties) key-
words and LUX directives. The list of the AFLOW property data
keywords valid as of this draft are those keywords in the original
AFLOW data REST API [18] and recently developed keywords listed
in Appendix C.
2.7. Directives are pseudo property keywords

LUX’s directives do not necessarily have an explicit presence
in the output data. Their main purpose is to provide context and
affect the way that the output is produced.

The list of directives is intentionally short and is as follows:

½\catalog"; \format"; \help"; \paging"; \schema"�
Directive: catalog. It is often helpful to provide a higher-level

abstraction of the data sets available. In AFLOW we need to control
which library or libraries of materials we wish to query. The inter-
nal implementation of the catalog directive could have been
provided as a domain specific keyword if the defining property
was guaranteed to be ubiquitous. However, this may not be possi-
ble for all domains and thus ‘‘catalog” has been designated in the
directive context to allow for specialized internal handling.
Within AFLOW the returned set of material properties can be
restricted by the use of the ‘‘catalog” directive. The currently
available catalogs are: [‘‘icsd”, ‘‘lib1”, ‘‘lib2”, ‘‘lib3”].

By default all catalogs are included in a search request and
hence the catalog directive may be omitted in many cases.
The principal use-scenario for the catalog directive is to restrict
the search to a subset of endpoint resources. The catalog direc-

tive is called as:

API-Server? < matchbook >;catalogðlibrary aÞ
for just ‘‘library_a”; or as

API-Server? < matchbook >;catalogðlibrary a : library bÞ

Table 2
Numerical filtering.

Query syntax Result description

<keyword>(1.234) Return only results where value in <keyword>
equals 1.234

<keyword>(!1.234) Return only results where value in <keyword>
does not equal 1.234

<keyword>(⁄1.234) Return only results where value in <keyword>
is less than or equal to 1.234

<keyword>(!⁄1.234) Return only results where value in <keyword>
is not less than or equal to 1.234, i.e. is greater
than 1.234

<keyword>(1.234⁄) Return only results where value in <keyword>
is greater than or equal to 1.234

<keyword>(!1.234⁄) Return only results where value in <keyword>
is not greater than or equal to 1.234, i.e. is less
than 1.234

F. Rose et al. / Computational Materials Science 137 (2017) 362–370 365
to search inclusively in both libraries ‘‘a” and ‘‘b” (i.e. an entry can
be in the conjunction of ‘‘a” and ‘‘b”).

Directive: format. We need to be able to format output of the
resultant data. The currently supported output modifiers are
‘‘html” and ‘‘json”. The ‘‘format” keyword is used to set the output
type. The default response is compact JSON, while setting ‘‘json”
explicitly returns a more legible JSON response.

API-Server? < matchbook >; formatðjsonÞ
or

API-Server? < matchbook >; formatðhtmlÞ
Directive: help. The help directive with no arguments will

return a response with a summary of the proper syntax and use
of LUX. If a specific help context has been internally defined for a
keyword, then the keyword may be passed to the help directive

to retrieve the associated message, otherwise the response will be
the same as if no keyword had been supplied.

API-Server?helpðÞ
or

API-Server?helpð< keyword >Þ
Directive: paging. We need the ability to control the number of

responses as some searches may return exceedingly large data sets
(potentially exceeding tens of millions of data points). By default,
AFLUX returns the first response page of k ¼ 64 data sets. This
return limit can be overridden with the ‘‘paging” directive by
specifying the number of data sets k per page, or the nth page of
k data sets. Paging has special functionality: asking for zero results
(k ¼ 0) will return the number of matching data sets; asking for the
zeroth page (n ¼ 0) will return all matching data sets regardless of
k - be careful as this can be a large response! Negating n will
change the sort order to descending. The paging directive is
called as:

API-Server? < matchbook >; pagingðnÞ
or

API-Server? < matchbook >; pagingðn; kÞ
Directive: schema. The schema directive allows external

access to the internal data store metadata. The returned metadata
represents useful information about the internal nature of the key-
word data allowing an end user to make informed decisions about
how to handle the property or properties of interest. The LUX lan-
guage makes no assumptions regarding the metadata content. This
allows freedom in the way that LUX is implemented on the backing
store. For the AFLUX instance, the AFLOW data schema is exposed
to allow many forms of disambiguation in the properties. There are
a few metadata values that are of special importance, specifically
(in no particular order) title, type, units and verification. Of partic-
ular note is the verification metadatum, which exposes a contextu-
ally relevant set of certification criteria that lend validity to the
property of interest. Each property has a potentially unique set of
metadata and should be examined prior to using the property in
your research. The following are examples of using the schema
directive:

API-Server?schemaðÞ
or

API-Server?schemað< keyword >Þ
Nota Bene: Directives are not logical. The directives do not

support inter-directive logical relations. Intra-directive prop-
erties are not required to be logically related. Any attempt to
depend on a logical relationship involving directive keywords
may not have the desired result. The directive keywords are
not interpreted in blocking context. Any attempt to modify prece-
dence by the use of blocking parentheses will likely cause a failure
in the request. Using directive keywords as the sole operators in
a request may result in an error state being returned.

2.8. Implicit procedures

The first match keyword in the matchbook is used as the order-
ing criteria for the response data set, so that the returned entries
are listed in ascending order of the property accessed by that
keyword.

In the AFLUX implementation the response always includes the
compound formula, the AUID and the AURL; i.e. the keywords com-
pound, auid and aurl are implicitly included in the query [18]. If
any of these properties are undesirable then they may be sup-
pressed by application of the suppression operator: e.g. the follow-
ing will prevent the response from producing the compound

property

API-Server? < matchbook >; $compound

The first data response is paged with 64 entries per page and
retrieval of subsequent pages require an explicit use of the paging
directive.

2.9. Matching criteria

The AFLUX Search-API can filter for search results that match a
range of different criteria, including exact matches and value
ranges for both strings and numerical data.

Numerical. For scalar filtering of a single element we have
three basic operations and they are

< \equal" j \less" j \more" >

and their inverses, i.e.

< \not equal" j \not less" j \not more" >

The results returned for a numerical value associated with a
particular keyword can be restricted to specific ranges using the
syntax shown in Table 2. Note that the operations ‘‘less than”
and ‘‘greater than” are constructed by negating the ‘‘greater than
or equal to” and ‘‘less than or equal to” operations, respectively.

Strings. For string matching we use a similar construction, as
shown in Table 3.

Note that the string operator <0> is optional unless the matching
string contains a reserved character.

Multiple criteria. The search described so far only demon-
strates a single matching condition, hereinafter referred to as a

366 F. Rose et al. / Computational Materials Science 137 (2017) 362–370
match. The logical construction of multiple matches, referred to as
the matchbook, is also supported. This is done by the juxtaposition
of matches with one of the two list separators, namely <:> the log-
ical _OR_ operator and <,> the logical _AND_ operator. Precedence
is maintained by using nested lists. For instance, if we want to
match two criteria simultaneously, the matchbook might look as
shown in the first row of Table 4. When matching multiple criteria,
two forms are possible, as shown in the remaining rows of Table 4.
3. Examples

3.1. Search for electrically insulating heat sink material

In this example, the steps to screen for an electrically insulating
heat sinkmaterial for use in nanoelectronics are introduced. For this
example, the search is for amaterialwith abandgap in excess of 6 eV
and thus will be electrically insulating, that also has a high value of
the lattice thermal conductivity to efficiently transport heat away
from the device. Therefore, as shown in Fig. 1(b), the matchbook

is constructed by querying two materials properties keywords. The
first keyword is agl_thermal_conductivity_300K, which is the
lattice thermal conductivity at 300 K calculatedusing theAGLquasi-
harmonic Debye-Grüneisen model as implemented within the
AFLOW framework [26–28]. The second keyword is Egap, the elec-
tronic structure band gap obtained by taking the difference between
the conduction band minimum and the valence band maximum,
using the band structure calculated along the high-symmetry paths
in reciprocal space as defined by the AFLOW Standard [17,3]. In this
case, the search is restricted to return onlymaterialswith a band gap
calculated to be greater than 6 eV by searching for Egap(6⁄). There
are two directives after the matchbook, both related to the for-
matting of the returned output. The paging(-1,20) directive

instructs the API to return the first 20 results in descending order,
Table 3
String filtering.

Query syntax Result description

<keyword>(‘foo’) Return only results where the string in <keyword> is
exactly ‘‘foo”

<keyword>(!‘foo’) Return only results where the string in <keyword> is
not ‘‘foo”

<keyword>(⁄‘foo’) Return only results where the string in <keyword>
ends with ‘‘foo”

<keyword>(!⁄‘foo’) Return only results where the string in <keyword>
does not end with ‘‘foo”

<keyword>(‘foo’⁄) Return only results where the string in <keyword>
starts with ‘‘foo”

<keyword>(!‘foo’⁄) Return only results where the string in <keyword>
does not start with ‘‘foo”

<keyword>(⁄‘foo’⁄) Return only results where the string in <keyword>
contains the substring ‘‘foo”

<keyword>(!⁄‘foo’⁄) Return only results where the string in <keyword>
does not contain the substring ‘‘foo”

Table 4
Multiple criteria filtering.

Query syntax Result description

<keyword>(1⁄,⁄1.234) Returns only results where
value in <keyword> is between
1.0 and 1.234

<keyword>(1⁄),<keyword>(⁄1.234) Logically equivalent to
<keyword>(1⁄,⁄1.234)

<keyword_a>(1.234), <keyword_b>(‘foo’) Return results that match for
<keyword_a>(1.234) and
<keyword_b>(‘foo’)

<keyword_a>(1.234) : <keyword_b>(‘foo’) Return results that match for
<keyword_a>(1.234) or
<keyword_b>(‘foo’)
while the format(html) directive instructs the API to return
the results in HTML format.

The returned results for this search are shown in Fig. 1(c). In this
case, 911 entries are found in the AFLOW data repository which
match the requested search criteria. The entries are sorted in
descending order of the value corresponding to the first property
keyword in the matchbook, agl_thermal_conductivity_300K,
due to the use of a negative value for the page number in the argu-
ment to the paging directive. Therefore, the materials with the
highest thermal conductivity which would be most suitable for this
application appear at the top of the list, namely two different struc-
tural phases of the material BeO.
3.2. Verification tests

In this example, the steps to verify convergence of the structural
relaxation calculations are introduced. Such checks are important
to catch entries for which the relaxation is incomplete, especially
when calculations are run automatically without direct user super-
vision. To facilitate such verification tests, additional keywords
have been implemented in the data API to expose information
about the stress tensor, Pulay stress, residual external pressure
on the relaxed cell and the dE value for the final electronic conver-
gence step. These properties are used along with other property
keywords already available in the database, such as forces (the
forces on the atoms) to check for the convergence of the relaxation
of the ion positions as well as cell size and shape, or to check the
convergence of the electronic self-consistent iterations. Other cal-
culation inputs such as the k-point grid and the energy cutoff for
the plane wave basis set are also already available via the AFLOW
API using the keywords kpoints and energy_cutoff.

The appropriate keywords to query for verification tests on a
particular property are listed in the AFLUX schema for that prop-
erty, which can be retrieved using the ‘‘schema” directive for
that keyword, i.e., by querying schema(<keyword>) using AFLUX.
Fig. 2 shows the schema for the keywords volume_atom and
positions_fractional, which are used to retrieve the average
volume per atom and the ionic positions (in fractional coordinates),
respectively. In both cases, these properties depend on the quality
of the electronic convergence, and so the keywords to query
include kpoints and energy_cutoff. The relaxation conver-
gence of the ionic positions can be verified by checking the forces
on the atoms using the keyword forces, while the volume conver-
gence can be validated by checking the residual pressure on the
cell and the stress tensor using the keywords pressure_resid-
ual and stress_tensor, respectively.

The relaxation of the size and shape of the cell can be checked

for all of the entries in the AFLOW-ICSD catalog (Inorganic Crystal

Structure Database) using the AFLUX search query API-Server?

stress_tensor,catalog(icsd), as demonstrated in the exam-
ple code shown in Appendix B. The distribution of stress tensor
components with the largest absolute value for each entry is
shown in the histogram in Fig. 3. This shows that approximately
half of the entries in the AFLOW-ICSD catalog have been converged
so that all of the components of the stress tensor have a magnitude
of less than 1 kB, while all of the entries in this catalog have no
stress tensor component exceeding 10 kB. Calculations resulting
in stress tensor components in excess of 10 kB are automatically
detected and re-run by the AFLOW workflow using increased pre-
cision and cut-offs for the plane wave basis set.

Note that comparison against the initial volume of the experi-
mentally measured ICSD structure is not necessarily the best
method for performing data verification, as reported ICSD struc-
tures are frequently measured under extreme temperature or pres-
sure conditions which will significantly impact bond lengths [29].

search/API/?schema(volume_atom,positions_fractional),format(json)
a

b

Fig. 2. (a) The AFLUX schema for a particular set of keywords can be retrieved using the ‘‘schema” directive with the appropriate keywords as arguments. (b) The schema
includes information on the property type referenced by each keyword, the units that the property is provided in, and a list of other keywords which can be used to verify the
convergence and quality of the calculation used to obtain that particular property.

-10 -8 -6 -4 -2 0 2 4 6 8 10
Max. stress tensor component (kB)

0

2

4

6

8

10

12

14

10
00

s
of

 e
nt

rie
s

Fig. 3. Histogram showing the distribution of the stress tensor component with the
largest absolute value for each entry in the AFLOW-ICSD catalog.

F. Rose et al. / Computational Materials Science 137 (2017) 362–370 367
Additionally, GGA exchange correlation functionals, such as PBE
[30], tend to systematically overestimate bond lengths and thus
volume per atom [31], leading to a systematic shift from the exper-
imentally measured volume per atom if the calculations have been
properly converged.

4. Conclusion

In this article, we have presented AFLUX, a URI-based search API
extending the original materials data oriented AFLOW-API. The
syntax of the new materials language AFLUX (LUX for AFLOW)
enables the construction of complex search queries and facilitates
the creation of remote operations on the AFLOW.org repositories.
The semantic of AFLUX is transparent and easy to adapt to other
materials genome initiatives, such as the Materials Project, NoMaD,
OQMD, and AiiDA. Implementation of an interface to the proposed
Open Databases Integration for Materials Design (OPTiMaDe,
www.optimade.org) common API for materials data is currently
in progress.
Acknowledgments

The authors thank Drs. O. Levy, I. Takeuchi, G. Hart, J. Carrete, J.J.
Plata and N. Mingo for helpful discussions. This work is partially
supported by DOD-ONR (N00014-13-1-0635, N00014-11-1-0136,
N00014-09-1-0921), NIST #70NANB12H163 and by the Duke
University—Center for Materials Genomics. C.T. and S.C. acknowl-
edge partial support by DOE (DE-AC02-05CH11231), specifically
the BES program under Grant #EDCBEE. C.O. acknowledges support
from the National Science Foundation Graduate Research Fellow-
ship under Grant No. DGF-1106401.
Appendix A. Syntax diagrams

In the instantiation of an AFLUX process we accept summons
that conform to the following syntax. The LUX syntax is described
in ABNF (https://tools.ietf.org/html/rfc5234 and https://tools.ietf.
org/html/rfc7405) (see Fig. 4).

http://www.optimade.org
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7405
https://tools.ietf.org/html/rfc7405

368 F. Rose et al. / Computational Materials Science 137 (2017) 362–370
Summons =

(matchbook/directive) ⁄(Binal Directive)

Matchbook =

[Unary-Not]([Unary-Mute]Datum-string"

("Match")")/"("Matchbook")"/(Matchbook

Binal Matchbook)

Match =

[Unary-Not] ([Unary-Loose](Datum-string/

Datum-number)[Unary-Loose]/"("Match")")/

(Match Binal Match)

Directive =

[Unary-Mute]Datum-string"("(Datum-string/Da

tum-number) ⁄(Binal(Datum-string/Datum-num
ber))")"
Appendix B. Example code for AFLUX programmatic access

This section includes an example code written in the python
programming language which can be used to perform program-
matic searches using AFLUX. This code was used to retrieve the
data used to generate the histogram shown in Fig. 3.

#!/usr/bin/python3

import json, sys, os

from urllib.request import urlopen

SERVER="http://aflowlib.duke.edu"

API="/search/API/?"

SUMMONS="stress_tensor,$compound, $aurl,catalog
(’icsd’),$paging(0)"

response=json.loads(urlopen(SERVER+API+SUM

MONS).read().decode("utf-8"))

for datum in response:

s_vals=[float(x) for x in datum

[’stress_tensor’].split(",")]
s_max=max(s_vals)
s_min=min(s_vals)
if(s_max >= abs(s_min)):

mag=s_max
else:

mag=s_min
print ("{0}, {1}".format(datum[’auid’], mag))
Fig. 4. Syntax diagrams for the LUX search-API: (a) Summ
Appendix C. Table of properties and API keywords

This section includes the new keywords added to the AFLOW
data API since the release of version 1.0 as described in Ref. 18.
These include keywords which were added to facilitate verification
as well as keywords that were added to provide access to data cal-
culated using the AEL-AGL methodology for thermomechanical
properties [26,27]. The kpoints keyword has also been upgraded
from version 1.0 to include the number of kpoints per line segment
for the electronic band structure calculation, and the new format is
also described below. For each keyword, we list the description,
type and the retrieval syntax. Full current information for any key-
word in the AFLOW data API can be retrieved using the AFLUX
schema directive described in Section 2.7 and Fig. 2.

C.1. Optional materials keywords (alphabetic order)

� ael_bulk_modulus_reuss
– Description. Returns AEL bulk modulus as calculated using

the Reuss average.
– Type. number.
– Units. GPa.
– Example. ael_bulk_modulus_reuss=105.315
– Request syntax. $aurl/?ael_bulk_modulus_reuss

� ael_bulk_modulus_voigt
– Description. Returns AEL bulk modulus as calculated using

the Voigt average.
– Type. number.
– Units. GPa.
– Example. ael_bulk_modulus_voigt=105.315
– Request syntax. $aurl/?ael_bulk_modulus_voigt

� ael_bulk_modulus_vrh
– Description. Returns AEL bulk modulus as calculated using

the Voigt-Reuss-Hill (VRH) average.
– Type. number.
– Units. GPa.
– Example. ael_bulk_modulus_vrh=105.315
– Request syntax. $aurl/?ael_bulk_modulus_vrh

� ael_elastic_anisotropy
– Description. Returns AEL elastic anisotropy.
– Type. number.
– Units. dimensionless.
– Example. ael_elastic_anisotropy=0.000816153
– Request syntax. $aurl/?ael_elastic_anisotropy

� ael_poisson_ratio
– Description. Returns AEL Poisson ratio.
– Type. number.
– Units. dimensionless.
ons, (b) Matchbook, (c) Match, and (d) Directive.

F. Rose et al. / Computational Materials Science 137 (2017) 362–370 369
– Example. ael_poisson_ratio=0.21599
– Request syntax. $aurl/?ael_poisson_ratio

� ael_shear_modulus_reuss
– Description. Returns AEL shear modulus as calculated using

the Reuss average.
– Type. number.
– Units. GPa.
– Example. ael_shear_modulus_reuss=73.7868
– Request syntax. $aurl/?ael_shear_modulus_reuss

� ael_shear_modulus_voigt
– Description. Returns AEL shear modulus as calculated using

the Voigt average.
– Type. number.
– Units. GPa.
– Example. ael_shear_modulus_voigt=73.7989
– Request syntax. $aurl/?ael_shear_modulus_voigt

� ael_shear_modulus_vrh
– Description. Returns AEL shear modulus as calculated using

the Voigt-Reuss-Hill (VRH) average.
– Type. number.
– Units. GPa.
– Example. ael_shear_modulus_vrh=73.7929
– Request syntax. $aurl/?ael_shear_modulus_vrh

� ael_speed_of_sound_average
– Description. Returns AEL average speed of sound calculated

from the transverse and longitudinal speeds of sound.
– Type. number.
– Units. m/s.
– Example. ael_speed_of_sound_average=500.0
– Request syntax. $aurl/?ael_speed_of_sound_average

� ael_speed_of_sound_longitudinal
– Description. Returns AEL speed of sound in the longitudinal

direction.
– Type. number.
– Units. m/s.
– Example. ael_speed_of_sound_longitudinal=500.0
– Request syntax. $aurl/?ael_speed_of_sound_

longitudinal

� ael_speed_of_sound_transverse
– Description. Returns AEL speed of sound in the transverse

direction.
– Type. number.
– Units. m/s.
– Example. ael_speed_of_sound_transverse=500.0
– Request syntax. $aurl/?ael_speed_of_sound_

transverse

� agl_acoustic_debye
– Description. Returns AGL acoustic Debye temperature.
– Type. number.
– Units. K.
– Example. agl_acoustic_debye=492
– Request syntax. $aurl/?agl_acoustic_debye

� agl_bulk_modulus_isothermal_300K
– Description. Returns AGL isothermal bulk modulus at 300 K

and zero pressure.
– Type. number.
– Units. GPa.
– Example. agl_bulk_modulus_isothermal_300K=96.6
– Request syntax. $aurl/?agl_bulk_modulus_isothermal_

300K

� agl_bulk_modulus_static_300K
– Description. Returns AGL static bulk modulus at 300K and

zero pressure.
– Type. number.
– Units. GPa.
– Example. agl_bulk_modulus_static_300K=99.59
– Request syntax. $aurl/?agl_bulk_modulus_static_300K
� agl_debye
– Description. Returns AGL Debye temperature.
– Type. number.
– Units. K.
– Example. agl_debye=620
– Request syntax. $aurl/?agl_debye

� agl_gruneisen
– Description. Returns AGL Grüneisen parameter.
– Type. number.
– Units. dimensionless.
– Example. agl_gruneisen=2.06
– Request syntax. $aurl/?agl_gruneisen

� agl_heat_capacity_Cv_300K
– Description. Returns AGL heat capacity at constant volume

(CV) at 300 K and zero pressure.
– Type. number.
– Units. kB/cell.
– Example. agl_heat_capacity_Cv_300K=4.901
– Request syntax. $aurl/?agl_heat_capacity_Cv_300K

� agl_heat_capacity_Cp_300K
– Description. Returns AGL heat capacity at constant pressure

(Cp) at 300 K and zero pressure.
– Type. number.
– Units. kB/cell.
– Example. agl_heat_capacity_Cp_300K=5.502
– Request syntax. $aurl/?agl_heat_capacity_Cp_300K

� agl_poisson_ratio_source
– Description. Returns source of Poisson ratio used to calculate

Debye temperature in AGL. Possible sources include
ael_poisson_ratio_<value>, in which case the Poisson
ratio was calculated from first principles using AEL; empir-
ical_ratio_<value>, in which case the value was taken
from the literature; and Cauchy_ratio_0.25, in which case
the default value of 0.25 of the Poisson ratio of a Cauchy
solid was used.

– Type. string.
– Example. agl_poisson_ratio_source=ael_poisson_

ratio_0.193802
– Request syntax. $aurl/?agl_poisson_ratio_source

� agl_thermal_conductivity_300K
– Description. Returns AGL thermal conductivity at 300 K.
– Type. number.
– Units. W/(m K).
– Example. agl_thermal_conductivity_300K=24.41
– Request syntax. $aurl/?agl_thermal_conductivity_

300K

� agl_thermal_expansion_300K
– Description. Returns AGL thermal expansion at 300 K and

zero pressure.
– Type. number.
– Units. 1/K.
– Example. agl_thermal_expansion_300K=4.997e-05
– Request syntax. $aurl/?agl_thermal_expansion_300K

� delta_electronic_energy_convergence
– Description. Convergence energy difference for the final elec-

tronic SCF step.
– Type. number.
– Example. delta_electronic_energy_convergence=

0.000071416

– Request syntax. $ aurl/?delta_electronic_energy_
convergence

� delta_electronic_energy_threshold
– Description. Convergence energy threshold for the electronic

SCF loop.
– Type. number.

370 F. Rose et al. / Computational Materials Science 137 (2017) 362–370
– Example. delta_electronic_energy_threshold=0.0001
– Request syntax. $aurl/?delta_electronic_energy_

threshold

� kpoints

– Description. Set of k-point meshes uniquely identifying the
various steps of the calculations, e.g., relaxation, static and
electronic band structure (specifying the k-space symmetry
points of the structure and the number of points per path
segment).

– Type. Set of numbers and strings separated by ‘‘,” and ‘‘;”.
– Example. kpoints=10,10,10;16,16,16;C-X,X-W,W-K,K-C,

C-L,L-U,U-W,W-L,L-K,U-X;20
– Request syntax. $aurl/?kpoints

� pressure_residual
– Description. Returns the residual pressure for the simulation,

i.e. the difference between the pressure specified in the input
and the actual pressure achieved for the relaxation.

– Type. number.
– Units. Natural units of the $code, e.g., kB or a.u. (Ry/Bohr) if

the calculations were performed with VASP [32] or QE [33],
respectively.

– Example. pressure_residual=10.0
– Request syntax. $aurl/?pressure_residual

� Pulay_stress
– Description. Returns the Pulay stress for the simulation.
– Type. number.
– Units. Natural units of the $code, e.g., kB or a.u. (Ry/Bohr) if

the calculations were performed with VASP [32] or QE [33],
respectively.

– Example. Pulay_stress=10.0
– Request syntax. $aurl/?Pulay_stress

� stress_tensor
– Description. Returns the stress tensor obtained for the

simulation.
– Type. List of 9 numbers separated by commas, giving the ele-

ments of the stress tensor in the form Sxx; Sxy; Sxz; Syx; Syy; Syz;
Szx; Szy; Szz.

– Units. Natural units of the $code, e.g., kB or a.u. (Ry/Bohr) if
the calculations were performed with VASP [32] or QE [33],
respectively.

– Example.
stress_tensor=0.74,0,0,0,0.74,�0,0,�0,�4.42

– Request syntax. $aurl/?stress_tensor

References

[1] S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnátek, R.V. Chepulskii, R.H.
Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O.
Demchenko, D. Morgan, AFLOW: an automatic framework for high-
throughput materials discovery, Comput. Mater. Sci. 58 (2012) 218–226.

[2] K. Yang, C. Oses, S. Curtarolo, Modeling off-stoichiometry materials with a
high-throughput ab-initio approach, Chem. Mater. 28 (2016) 6484–6492.

[3] C.E. Calderon, J.J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan,
M.J. Mehl, G.L.W. Hart, M. Buongiorno Nardelli, S. Curtarolo, The AFLOW
standard for high-throughput materials science calculations, Comput.
Mater. Sci. 108 (Part A) (2015) 233–238.

[4] O. Levy, M. Jahnátek, R.V. Chepulskii, G.L.W. Hart, S. Curtarolo, Ordered
structures in Rhenium binary alloys from first-principles calculations, J. Am.
Chem. Soc. 133 (2011) 158–163.

[5] O. Levy, G.L.W. Hart, S. Curtarolo, Structure maps for hcp metals from first-
principles calculations, Phys. Rev. B 81 (2010) 174106.

[6] O. Levy, G.L.W. Hart, S. Curtarolo, Uncovering compounds by synergy of cluster
expansion and high-throughput methods, J. Am. Chem. Soc. 132 (2010) 4830–
4833.

[7] G.L.W. Hart, S. Curtarolo, T.B. Massalski, O. Levy, Comprehensive search for
new phases and compounds in binary alloy systems based on platinum-group
metals, using a computational first-principles approach, Phys. Rev. X 3 (2013)
041035.
[8] J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding unprecedentedly low-
thermal-conductivity half-Heusler semiconductors via high-throughput
materials modeling, Phys. Rev. X 4 (2014) 011019.

[9] J. Carrete, N. Mingo, S. Wang, S. Curtarolo, Nanograined half-Heusler
semiconductors as advanced thermoelectrics: an ab initio high-throughput
statistical study, Adv. Func. Mater. 24 (2014) 7427–7432.

[10] O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S. Curtarolo,
Materials cartography: representing and mining materials space using
structural and electronic fingerprints, Chem. Mater. 27 (2015) 735–743.

[11] A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo, N. Mingo, High-throughput
computation of thermal conductivity of high-temperature solid phases: the
case of oxide and fluoride perovskites, Phys. Rev. X 6 (2016) 041061.

[12] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Universal
fragment descriptors for predicting properties of inorganic crystals, Nature
Commun. 8 (2017) 15679.

[13] J. Yong, Y. Jiang, D. Usanmaz, S. Curtarolo, X. Zhang, L. Li, X. Pan, J. Shin, I.
Takeuchi, R.L. Greene, Robust topological surface state of Kondo insulator
SmB6 thin films, Appl. Phys. Lett. 105 (2014) 222403.

[14] E. Perim, D. Lee, Y. Liu, C. Toher, P. Gong, Y. Li, W.N. Simmons, O. Levy, J.J.
Vlassak, J. Schroers, S. Curtarolo, Spectral descriptors for bulk metallic glasses
based on the thermodynamics of competing crystalline phases, Nature
Commun. 7 (2016) 12315.

[15] S. Curtarolo, G.L.W. Hart, M. Buongiorno Nardelli, N. Mingo, S. Sanvito, O. Levy,
The high-throughput highway to computational materials design, Nature
Mater. 12 (2013) 191–201.

[16] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.
W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, O. Levy, AFLOWLIB.ORG:
a distributed materials properties repository from high-throughput ab initio
calculations, Comput. Mater. Sci. 58 (2012) 227–235.

[17] W. Setyawan, S. Curtarolo, High-throughput electronic band structure
calculations: challenges and tools, Comput. Mater. Sci. 49 (2010) 299–312.

[18] R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, S.
Curtarolo, A RESTful API for exchanging materials data in the AFLOWLIB.org
consortium, Comput. Mater. Sci. 93 (2014) 178–192.

[19] M. Scheffler, C. Draxl, Computer Center of the Max-Planck Society, Garching,
The NoMaD Repository, 2014 <http://nomad-repository.eu>.

[20] A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G.
Ceder, A high-throughput infrastructure for density functional theory
calculations, Comput. Mater. Sci. 50 (2011) 2295–2310.

[21] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and
discovery with high-throughput density functional theory: the open quantum
materials database (OQMD), JOM 65 (2013) 1501–1509.

[22] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, AiiDA, 2016
<http://www.aiida.net>.

[23] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, AiiDA: automated
interactive infrastructure and database for computational science, Comput.
Mater. Sci. 111 (2016) 218–230.

[24] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier (URI):
Generic Syntax, 2005 <https://tools.ietf.org/html/rfc3986>.

[25] D. Crocker, P. Overell, Augmented BNF for Syntax Specifications: ABNF, 2008
<https://tools.ietf.org/html/rfc5234>.

[26] C. Toher, J.J. Plata, O. Levy, M. de Jong, M.D. Asta, M. Buongiorno Nardelli, S.
Curtarolo, High-throughput computational screening of thermal conductivity,
Debye temperature, and Grüneisen parameter using a quasiharmonic Debye
model, Phys. Rev. B 90 (2014) 174107.

[27] C. Toher, C. Oses, J.J. Plata, D. Hicks, F. Rose, O. Levy, M. de Jong, M.D. Asta, M.
Fornari, M. Buongiorno Nardelli, S. Curtarolo, Combining the AFLOW GIBBS
and Elastic Libraries to efficiently and robustly screen thermo-mechanical
properties of solids, Phys. Rev. Mater. (in press), arXiv:1611.05714.

[28] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric
thermodynamics of solids from energy curves using a quasi-harmonic Debye
model, Comput. Phys. Commun. 158 (2004) 57–72.

[29] G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, The inorganic crystal structure
data base, J. Chem. Inf. Comput. Sci. 23 (1983) 66–69.

[30] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[31] L. He, F. Liu, G. Hautier, M.J.T. Oliveira, M.A.L. Marques, F.D. Vila, J.J. Rehr, G.-M.
Rignanese, A. Zhou, Accuracy of generalized gradient approximation
functionals for density-functional perturbation theory calculations, Phys.
Rev. B 89 (2014) 064305.

[32] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–
11186.

[33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G.
Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.
Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L.
Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P.
Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source
software project for quantum simulations of materials, J. Phys.: Condens.
Matter 21 (2009) 395502.

http://refhub.elsevier.com/S0927-0256(17)30229-X/h0005
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0005
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0005
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0005
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0010
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0010
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0015
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0015
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0015
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0015
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0020
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0020
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0020
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0025
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0025
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0030
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0030
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0030
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0035
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0035
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0035
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0035
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0040
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0040
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0040
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0045
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0045
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0045
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0050
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0050
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0050
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0055
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0055
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0055
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0060
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0060
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0060
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0065
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0065
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0065
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0065
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0070
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0070
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0070
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0070
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0075
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0075
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0075
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0080
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0080
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0080
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0080
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0085
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0085
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0090
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0090
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0090
http://nomad-repository.eu
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0100
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0100
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0100
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0105
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0105
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0105
http://www.aiida.net
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0115
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0115
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0115
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0130
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0130
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0130
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0130
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0140
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0140
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0140
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0145
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0145
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0150
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0150
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0155
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0155
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0155
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0155
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0160
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0160
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0160
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165
http://refhub.elsevier.com/S0927-0256(17)30229-X/h0165

	AFLUX: The LUX materials search API for the AFLOW data repositories
	1 Introduction
	2 AFLUX search API
	2.1 Design specification
	2.2 URI query context
	2.3 Summons syntax
	2.4 Character set
	2.5 Operator character codex
	2.6 Properties are reserved words
	2.7 Directives are pseudo property keywords
	2.8 Implicit procedures
	2.9 Matching criteria

	3 Examples
	3.1 Search for electrically insulating heat sink material
	3.2 Verification tests

	4 Conclusion
	Acknowledgments
	Appendix A Syntax diagrams
	Appendix B Example code for AFLUX programmatic access
	Appendix C Table␣of properties and API keywords
	C.1 Optional materials keywords (alphabetic order)

	References

