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Abstract

The traditional paradigm for materials discovery has been recently expanded
to incorporate substantial data-driven research. With the intent to accelerate
the development and the deployment of new technologies, the AFLOW Fleet
for computational materials design automates high-throughput first-principles
calculations and provides tools for data verification and dissemination for a
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broad community of users. AFLOW incorporates different computational mod-
ules to robustly determine thermodynamic stability, electronic band structures,
vibrational dispersions, thermomechanical properties, and more. The AFLOW

data repository is publicly accessible online at aflow.org, with more than 1.8
million materials entries and a panoply of queryable computed properties. Tools
to programmatically search and process the data, as well as to perform online
machine learning predictions, are also available.
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1 Introduction

The AFLOW Fleet is an integrated software infrastructure for automated materials
design (Curtarolo et al. 2013) centered around the Automatic Flow (AFLOW) (Cur-
tarolo et al. 2012a) framework for computational materials science. It features
multiple scientific software packages, including the AFLOW high-throughput frame-
work, the AFLOWπ (Supka et al. 2017) medium-throughput framework, and the
PAOFLOW (Buongiorno Nardelli et al. 2017) utility for electronic structure analysis,
along with the AFLOW.org data repository (Curtarolo et al. 2012b), its associated
representational state transfer application programming interface (REST-API)) (Tay-
lor et al. 2014), and the AFLUX Search-API (Rose et al. 2017). These elements
are well integrated with one another: a Python+JSON (JavaScript Object Notation)
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interface connects AFLOW, AFLOWπ , and PAOFLOW; and all software packages
access the AFLOW.org repository via the REST-API and the Search-API.

Similar infrastructure has been developed by initiatives such as the Materials
Project (Jain et al. 2013), NoMaD (Scheffler et al. 2014), OQMD (Saal et al. 2013),
the Computational Materials Repository (Landis et al. 2012), and AiiDA (Pizzi
et al. 2016). The Materials Project uses the pymatgen (Ong et al. 2013) Python-
language data generation software infrastructure, and their repository is available
at materialsproject.org. The Novel Materials Discovery (NoMaD) Labo-
ratory maintains an aggregate repository available at nomad-repository.eu,
incorporating data generated by other frameworks including AFLOW. The Open
Quantum Materials Database (OQMD) (Saal et al. 2013) uses tools such as qmpy
to generate their database, which can be accessed at oqmd.org. The Atomic
Simulation Environment (ASE) (Bahn and Jacobsen 2002) is used to generate the
Computational Materials Repository, available at cmr.fysik.dtu.dk. The ASE

scripting interface is also used by the Automated Interactive Infrastructure and
Database (AiiDA) framework available at aiida.net, which revolves around
relational databases for its overall design and data storage. Additional materi-
als design utilities include the High-Throughput-Toolkit (HTTK) and the asso-
ciated Open Materials Database, httk.openmaterialsdb.se, as well as
the Materials Mine database available at www.materials-mine.com, while
computationally predicted crystal structures can be obtained from the Theoretical
Crystallography Open Database at www.crystallography.net/tcod/.

The AFLOW Fleet employs density functional theory (DFT) to perform the
quantum mechanical calculations required to obtain materials properties from first
principles. These DFT calculations are carried out by external software packages,
namely, the Vienna Ab initio Simulation Package (VASP) (Kresse and Hafner 1993;
Kresse and Furthmüller 1996) in the case of AFLOW and QUANTUM ESPRESSO

(Giannozzi et al. 2009, 2017) in the case of AFLOWπ . Results are stored in the
AFLOW.org repository (Curtarolo et al. 2012b) and made freely available online via
the aflow.org web portal, which is programmatically accessible and searchable
via the AFLOW Data REST-API (Taylor et al. 2014) and AFLUX Search-API (Rose
et al. 2017), respectively. The repository currently contains calculated properties
for over 1.8 million materials entries, including both experimentally observed and
theoretically predicted structures, and new results are continuously being added.
This AFLOW data is successfully applied to (i) formulate descriptors for the
formation of disordered materials such as metallic glasses (Perim et al. 2016), (ii)
find new magnetic materials (Sanvito et al. 2017) and superalloys (Nyshadham et al.
2017), (iii) generate phase diagrams for alloy systems (Barzilai et al. 2016, 2017a;
Lederer et al. 2018) and identify new ordered compounds (Levy et al. 2010a,b,c;
Barzilai et al. 2017b), and (iv) train machine learning models to identify potential
superconductors (Isayev et al. 2015) and predict electronic and thermomechanical
properties (Isayev et al. 2017).
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2 AFLOW: Efficient Data Generation

The AFLOW framework for computational materials science automates the full
workflow for materials properties calculations (Curtarolo et al. 2012a). Using
a standard set of calculation parameters (Calderon et al. 2015), input files are
automatically generated for the VASP (Kresse and Hafner 1993; Kresse and Furth-
müller 1996) DFT software package with projector-augmented-wave pseudopo-
tentials (Blöchl 1994) and the PBE parameterization of the generalized gradient
approximation to the exchange-correlation functional (Perdew et al. 1996). Calcu-
lations are monitored as they run to detect and correct for errors without the need
for any user intervention. Useful materials data is then extracted and processed for
dissemination through the AFLOW.org repository. The entire framework is written
in the C++ programming language (more than 400,000 highly integrated lines,
as of version 3.1.153), providing a robust platform for continuous infrastructure
development with reliable high performance.

2.1 AFLOW: Automated Workflows

AFLOW offers several automated workflows, each dedicated to a specific type
of characterization yielding a set materials properties. For electronic properties,
AFLOW performs four DFT calculations: two rounds of geometry relaxation (stage
name: “RELAX”) using the VASP conjugate gradient optimization algorithm, a static
run (i.e., fixed geometry; stage name: “STATIC”) with a denser k-point mesh to
obtain an accurate density of states, and a band structure calculation (stage name:
“BANDS”) following the AFLOW Standard path through the high-symmetry k-points
in the Brillouin zone (Setyawan and Curtarolo 2010).

Other workflows in AFLOW manage ensembles of DFT calculations, all offering
the same automated error-correction procedures for high-throughput processing.
For thermal and elastic properties, the Debye-Grüneisen model (Automatic GIBBS

Library, AGL) (Toher et al. 2014) is combined with the Automatic Elasticity Library
(AEL) (Toher et al. 2017) as described in Sect. 2.6. A more accurate thermal
characterization can be resolved with the finite displacement method for phonon
calculations (Automatic Phonon Library, APL) (Nath et al. 2016) and its associated
extensions, i.e., the quasi-harmonic approximation (QHA-APL) (Nath et al. 2016) and
Automatic Anharmonic Phonon Library (AAPL) (Plata et al. 2017), as described
in Sect. 2.7. AFLOW also extends beyond ideal crystalline materials characteriza-
tion, offering modules to investigate off-stoichiometric materials (AFLOW-POCC,
Sect. 2.5) (Yang et al. 2016) and to predict metallic glass formation as a function
of composition (Perim et al. 2016).
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2.2 AFLOW: Prototype Library

The AFLOW framework uses decorated crystal structure prototypes for materials
discovery (Mehl et al. 2017). Structural prototypes are specific arrangements of
atoms which are commonly observed in nature, such as the rock salt, zinc blende,
and wurtzite structures. The atomic sites in these prototypes are populated with
different elemental species to generate materials structures, for which the properties
and thermodynamic stability are then obtained from DFT calculations. An extensive
list of the structural prototypes included in AFLOW has been published in Mehl et al.
(2017) and is available online at http://aflow.org/CrystalDatabase.

Pages within the website display a curated list of data for each structural
prototype, including materials exhibiting this structure, various symmetry descrip-
tions, the primitive and atomic basis vectors, and original references where the
structure was observed. Accompanying these descriptions is an interactive Jmol
visualization of the prototype, as described in Sect. 2.8. The page also contains a
prototype generator, where the structural degree(s) of freedom and atomic species
are defined to create new materials by leveraging the AFLOW prototypes module.
This generates the corresponding input file for one of many ab initio software
packages, including VASP (Kresse and Hafner 1993; Kresse and Furthmüller 1996),
QUANTUM ESPRESSO (Giannozzi et al. 2009, 2017), ABINIT (Gonze et al. 2002),
and FHI-AIMS (Blum et al. 2009).

2.3 AFLOW-SYM: Symmetry Analyzer

The AFLOW framework automatically analyzes the symmetry of materials structures
and returns a complete symmetry description. To address numerical tolerance
issues, AFLOW employs an atom mapping procedure that is reliable even for
non-orthogonal unit cells and uses an adaptive tolerance scheme to ensure sym-
metry results are commensurate with crystallographic principles (see Fig. 1). These
routines—referred to as AFLOW-SYM (Hicks et al. 2018)—are robust and have been
used to successfully determine the symmetry properties of over 1.8 million materials
in the AFLOW repository.

Structural isometries are identified by determining the set of symmetry operators
that lead to isomorphic mappings between the original and transformed atoms. The
structure exhibits symmetry under a particular operation if the set of closest mapping
distances are all below a tolerance threshold ε0. Periodic boundary conditions
introduce complexity for finding the minimum mapping vector, necessitating the
exploration of neighboring cells. This is achieved via the method of images through
either (i) a unit cell expansion, yielding the globally optimal distance or (ii) a
bring-in-cell method (generally performed in fractional coordinates) that reduces
each component of the distance vector independently. While computationally
inexpensive compared to the unit cell expansion, the bring-in-cell method is only
exact for orthogonal lattices (i.e., described by a diagonal metric tensor), since it
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Fig. 1 Visualization of tolerance-sphere warping and adaptive tolerance method. (a) Illus-
tration of the warping of space when transforming from cartesian to fractional coordinates in the
general case. (b) Spectrum of space groups identified by AFLOW-SYM with different tolerance
choices

does not consider overlap between lattice vectors (see Fig. 1a). To safely exploit
the bring-in-cell approach, AFLOW-SYM employs a heuristic maximum tolerance
εmax based on the maximum lattice skewness with a threshold which guarantees
consistent and accurate results (Hicks et al. 2018).

Given a particular tolerance value, different symmetry operations can be realized
in or excluded from the description of a crystal. Figure 1b highlights how the
tolerance value affects the possible space groups for AgBr (ICSD #56551 with a
reported space group #11). The neighboring space group regions are consistent
with non-isomorphic subgroup relations, namely, between space groups #59 and
#11 and between #225 and #166. However, a gap or “confusion” tolerance region
occurs between space groups #59 and #166 (with no direct subgroup relations).
The problematic regions stem from noise in the structural data, impeding the
identification of operations consistent with symmetry principles. This problem is
solved by using a radial tolerance scan extending from the input tolerance ε0. Given
a change in tolerance, the algorithm recalculates and verifies all symmetry properties
until a globally consistent description is identified.

AFLOW-SYM is compatible with many established ab initio input files, including
those for VASP (Kresse and Furthmüller 1996), QUANTUM ESPRESSO (Giannozzi
et al. 2009, 2017), ABINIT (Gonze et al. 2002), and FHI-AIMS (Blum et al. 2009).
From the structural information, AFLOW-SYM delivers the symmetries of the lattice,
crystal (lattice + atoms), reciprocal lattice, superlattice (equally decorated sites),
and crystal-spin (lattice + atoms + magnetic moment). This affords a multitude of
symmetry descriptions to be presented, such as the space group number/symbol(s),
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Pearson symbol, point group symbol(s), Wyckoff positions, and Bravais lattice
type/variation (Setyawan and Curtarolo 2010). Moreover, the operators of the
different symmetry groups—including the point groups, factor groups, space group,
and site symmetries—are provided to users in rotation matrix, axis-angle, matrix
generator, and quaternion representations for easy manipulation. All symmetry
functions support the option to output in JSON format. This allows AFLOW-SYM to
be leveraged from other programming languages such as Java, Go, Ruby, Julia, and
Python—facilitating the incorporation of AFLOW-SYM into numerous applications
and workflows.

2.4 AFLOW-CHULL: Convex Hull Analysis

Structure and energy data from the AFLOW.org repository are used to resolve
the low-temperature/low-pressure thermodynamic stability of compound systems.
For a given stoichiometry, the AFLOW.org repository provides the DFT energies
of various crystal polymorphs. By exploring representative structures over the
full range of stoichiometries, AFLOW-CHULL (Oses et al. 2018) constructs the
minimum energy surface, i.e., the lower-half convex hull (Barber et al. 1996),
defining thermodynamic stability for the system (at zero temperature and pressure).
Structures on the hull are thermodynamically stable (ground state), while those
far from the hull will decompose into a combination of stable phases, dictating
synthesizability at these conditions. Any analysis of the hull requires sufficient
statistics to ensure convergence, i.e., enough representative structures have been
included in the alloy system calculations such that any additional entries are not
expected to change the minimum energy surface.

The geometric construction offers several key properties critical for synthesiz-
ability. For a specific composition, the energetic distance to the hull quantifies the
energy released during the decomposition, while the ground state phases defining
the tie-line/facet below the compound are the products of the reaction. The distance
from the hull also measures the “severity” of instability, i.e., structures near the
hull may stabilize at higher temperatures or pressures. Similarly, a robust stability
criterion can be quantified for ground state phases by removing the phase from
the set and measuring the distance of the compound from the new hull. The
larger the distance, the less likely the ground state phase will become unstable
at higher temperatures/pressures (Sanvito et al. 2017). The generalized tie-lines
(facet ridges) dictate which phases can coexist in equilibrium and play a role in
determining the feasibility of synthesis/treatment techniques, such as precipitation
hardening (Nyshadham et al. 2017).

Given a compound system, AFLOW-CHULL automatically queries the AFLOW.org
database, constructs the hull, calculates the aforementioned properties, and delivers
the information in one of the following formats: PDF, plaintext, and JSON. AFLOW-

CHULL can also visualize the 2D and 3D hulls, as illustrated in Fig. 2. In the case
of the PDF output format, hyperlinks are included to allow for additional queries
of the full properties set offered through the AFLOW.org repository. Links are also
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Fig. 2 Example convex hull illustrations offered by AFLOW. (a) 2D convex hull of the CuZr
system generated automatically by AFLOW. (b) 3D convex hull of the CuMnZn system presented
through the AFLOW-CHULL application online: http://aflow.org/aflow-chull

added connecting the hull visualization to relevant properties for easy navigation of
the full PDF document.

A separate online application, available at aflow.org/aflow-chull, has
been created to showcase the results of AFLOW-CHULL and provides interactive
binary and ternary convex hull visualizations. The application consists of four
components: the periodic table, visualization viewport, selected entries list, and the
comparison page. The periodic table component is the entry point of the application
and provides the interface to search for convex hulls of different alloy systems.
Elements within the periodic table respond when selected to display information
to the user. As a selection is made, the color of each border will change to green,
yellow, and red based on hull reliability. A reliability threshold of 200 compounds
for a binary hull has been heuristically defined. Selections highlighted in green are
well above this threshold, while those in yellow/red are near/below the cutoff.

When a hull is selected, the application transitions to the visualization viewport
component. Depending on the number of elements selected, a 2D plot (binary) or
3D plot (ternary) will appear. Each plot is interactive, allowing points to be selected,
where each point represents an entry in the AFLOW repository. Information for each
point is displayed in the selected entries list component, which is accessible through
the navigation bar. Selected hulls will appear on the comparison page as a grid of
cards, and selected points are highlighted across all hulls containing those entries.

2.5 AFLOW-POCC: Partial Occupations

The AFLOW Partial Occupation module (AFLOW-POCC) (Yang et al. 2016) models
configurational and structural disorder including substitutions, vacancies, and ran-

http://aflow.org/aflow-chull
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Fig. 3 Structure enumeration for off-stoichiometric materials modeling. For the off-
stoichiometric material ZnS0.25Se0.75, a superlattice of size n = 4 accommodates the stoichiometry
exactly. By considering all possibilities of decorated supercells and eliminating duplicates by
UFF energies, seven structures are identified as unique. These representative structures are fully
characterized by AFLOW and VASP and are ensemble-averaged to resolve the system-wide
properties

dom lattice site occupation, by generating a set of representative configurations.
First, a supercell size is determined that accommodates the fractional stoichiometry
to within a user-defined tolerance. Given the supercell size, n, superlattices are
generated using Hermite Normal Form matrices (Hart and Forcade 2008), which
are then decorated in accordance with the stoichiometry to generate all possible
configurations, as illustrated in Fig. 3. Duplicate configurations are rapidly identified
and eliminated by estimating the energy of each structure using the Universal
Force Field (UFF) model (Rappe et al. 1992). The properties of the remaining
unique configurations are calculated with DFT, and ensemble-averaged to resolve
system-wide properties of the disordered material. The ensemble-average employs
a Boltzmann distribution weight which is a function of a disorder parameter
(temperature), energy relative to the ground state configuration, and degeneracy as
determined by the UFF model. Ensemble-average properties include the electronic
band gap, density of states, and magnetic moment.

2.6 AEL and AGL: Thermomechanical Properties

The AFLOW Automatic Elasticity Library (AFLOW-AEL Toher et al. 2017) and
the AFLOW Automatic GIBBS Library (AFLOW-AGL Toher et al. 2014) modules
determine thermomechanical materials properties from calculations of strained
primitive cells. These methods are generally computationally less costly than the
phonon (APL and AAPL) calculations described in Sect. 2.7, although APL and
AAPL generally give more quantitatively accurate results, particularly for properties
where anharmonic effects are important. AEL and AGL have been combined into a
single automated workflow, which has been used to calculate the thermomechanical
properties for over 5000 materials in the AFLOW repository.

The AEL module applies a set of independent normal and shear strains to the
primitive cell of a material (de Jong et al. 2015; Toher et al. 2017) as depicted in
Fig. 4a and uses DFT to calculate the resulting stress tensors. This set of strain-stress
data is used to generate the elastic stiffness tensor, i.e., the elastic constants:
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Fig. 4 Ensembles of distorted geometries for the calculation of thermomechanical properties
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elastic constants. AGL calculates the energies of a set of (b) isotropically compressed and expanded
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of state. APL obtains the (d) second-order harmonic IFCs from a set of single-atom displacements
and the (e) third-order anharmonic IFCs from a set of two-atom displacements
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written in the 6 × 6 Voigt notation using the mapping (Poirier 2000): 11 �→ 1,
22 �→ 2, 33 �→ 3, 23 �→ 4, 13 �→ 5, 12 �→ 6. These elastic constants are combined
to calculate the bulk, B, and shear, G, elastic moduli in the Voigt, Reuss, and Voigt-
Reuss-Hill (VRH, BVRH and GVRH) approximations. The Poisson ratio ν is then
given by:

ν = 3BVRH − 2GVRH

6BVRH + 2GVRH
. (2)

The AGL module is based on the GIBBS (Blanco et al. 1996, 2004) quasi-harmonic
Debye-Grüneisen model and calculates the energy as a function of volume, E(V ),
for a set of isotropically compressed and expanded strains of the primitive cell, as
illustrated in Fig. 4b. The E(V ) data are fitted by either a numerical polynomial or
an empirical equation of state to obtain the adiabatic bulk modulus BS(V ), as shown
in Fig. 4c. The Debye temperature θD(V ) as a function of volume is then calculated
using the expression:
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θD = h̄

kB
[6π2V 1/2n]1/3f (ν)

√
BS

M
, (3)

where n is the number of atoms per unit cell, M is the unit cell mass, and f (ν) is a
function of the Poisson ratio ν:
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3

, (4)

where ν can be obtained from Eq. 2 using AEL or set directly by the user. The
vibrational contribution to the free energy, Fvib, is given by:

Fvib(θD; T )=nkBT

[
9

8

θD

T
+3 log

(
1−e−θD/T

)
−D

(
θD

T

)]
, (5)

where D(θD/T ) is the Debye integral:

D (θD/T ) = 3

(
T

θD

)3 ż θD/T

0

x3

ex − 1
dx. (6)

The Gibbs free energy is obtained from:

G(V ;p, T ) = EDFT(V ) + Fvib(θD(V ); T ) + pV. (7)

The volume which minimizes G(V ;p, T ) at a given pressure p and temperature T

is the equilibrium volume Veq, which is used to evaluate θD(Veq) and the Grüneisen
parameter γ as defined by:

γ = −∂ log(θD(V ))

∂ logV
. (8)

Finally, θD and γ are used to calculate other thermal properties including CV, Cp,
αV, and κL (Toher et al. 2014; Blanco et al. 2004).

2.7 AFLOW-APL: Phonons

The AFLOW Automatic Phonon Library (AFLOW-APL) (Curtarolo et al. 2012a)
calculates the harmonic vibrational properties of a crystal using the finite dis-
placement method. Computed properties include the phonon dispersion and density
of states, vibrational entropy (Svib), and the heat capacity (at constant volume,
CV) as a function of temperature. These features are determined through an
analysis of the phonon modes, accessed through the Interatomic Force Constants
(IFCs) (Maradudin et al. 1971). To first approximation, the harmonic (second-order)
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IFC Ci,j ;α,β is the negative of the force exerted in the α direction on the atom i when
the atom j is displaced in the β direction, with all other atoms maintaining their
equilibrium position. To determine the forces, the atoms of the structure (supercell)
are individually perturbed as illustrated in Fig. 4d. The forces are obtained with
DFT from the derivative of the total energy using the Hellmann-Feynman theorem.
Supercells are used to sufficiently capture/isolate the impact of the distortion on
the structure; distortions on small cells create forces on all atoms as well as their
periodic images.

Given an input structure, AFLOW creates the full set of distorted supercell
structures for the calculation of the forces. To minimize the number of expensive
DFT calculations (primary computational bottleneck), AFLOW-SYM (see Sect. 2.3)
is employed to determine which distortions are symmetrically equivalent using the
site symmetry. Only inequivalent distortions are applied and explicitly calculated.
Symmetry is then used to appropriately construct the IFC matrix, from which
the dynamical matrix is constructed and the phonon modes, energies, and group
velocities are derived.

APL has been extended to include the calculation of quasi-harmonic (quasi-
harmonic approximation APL, QHA-APL Nath et al. 2016, 2017) and anharmonic
(Automatic Anharmonic Phonon Library, AAPL Plata et al. 2017) effects in order
to obtain properties such as the heat capacity at constant pressure Cp, coefficient of
volumetric thermal expansion αV, and lattice thermal conductivity κL.

QHA-APL performs harmonic APL calculations at multiple different volumes and
extracts the Grüneisen parameter from the change of the phonon frequencies with
respect to volume:

γi = − V

ωi

∂ωi

∂V
. (9)

The Grüneisen parameter can be used in combination with harmonic properties such
as CV to calculate Cp, αV (Nath et al. 2016), and κL (Nath et al. 2017).

AAPL obtains the third-order anharmonic IFCs by distorting two atoms in a
supercell structure at a time as depicted in Fig. 4e and then calculating the change
in forces on the other atoms (Plata et al. 2017). These IFCs are used to calculate
the three-phonon scattering rates, and thus the scattering time and mean free
displacement. These quantities are combined with the group velocities obtained
from harmonic APL to solve the Boltzmann transport equation and calculate κL with
quantitative accuracy (Plata et al. 2017).

2.8 AFLOW: Visualization Tools

AFLOW leverages a panoply of visualization tools for materials data, including
standard software such as gnuplot, latex, and xmgrace for plots of phonon
dispersions, electronic band structures, electronic density of states, and convex hull
visualization. These plots are served publicly through the AFLOW.org repository.
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Fig. 5 Side-by-size visualization of the crystal structure and Brillouin zone using
Jmol. The structure highlighted is Ag3KS2 (ICSD #73581): http://aflow.org/material.php?id=
Ag6K2S4_ICSD_73581. The AFLOW Standard path of high-symmetry k-points is illustrated in
the Brillouin zone (Setyawan and Curtarolo 2010)

To visualize crystal structures, AFLOW employs the Jmol software, which has
incorporated substantial functionality for AFLOW-specific application. The JSmol
branch of the software powers the online crystal structure visualizations in the
AFLOW.org repository entry pages and AFLOW Prototype Library pages. With
its recently added POSCAR reader, JSmol provides an assortment of capabilities
ranging from different view perspectives, supercell expansions, and varying unit cell
representations. A similar visualization application showing the AFLOW Standard
high-symmetry paths in the Brillouin zone (Setyawan and Curtarolo 2010) is
currently being incorporated, as illustrated in Fig. 5. Additionally, the Jmol desktop
client offers a specialized macro (aflow) for visualization of alloy systems, which
leverages the AFLUX Search-API.

3 AFLOWπ : Minimalist High-Throughput

The AFLOWπ (Supka et al. 2017) framework has been originally implemented
as a minimalist software to perform verification tasks (see Sect. 5.7) on data
published on AFLOW.org. By design, AFLOWπ is easy to install and to extend to
a variety of electronic structure codes (currently only the QUANTUM ESPRESSO

(Giannozzi et al. 2009, 2017) DFT package is implemented). AFLOWπ builds on
the versatility of Python, providing a module to prepare, run, and analyze large
sets of first-principles calculations and includes tools for the automatic projection
on pseudo-atomic orbitals (PAO; see Sect. 4) and the self-consistent calculation of
Hubbard U corrections within the Agapito, Curtarolo and Buongiorno Nardelli
(ACBN0) approach (Agapito et al. 2015; Andrade et al. 2015). In addition,
workflows for the calculation of elastic constants, diffusive transport coefficients,
optical spectra, and phonon dispersions with DFT+U (see Fig. 6a for assessing the

http://aflow.org/material.php?id=Ag6K2S4_ICSD_73581
http://aflow.org/material.php?id=Ag6K2S4_ICSD_73581
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Fig. 6 Vibrational spectrum calculated with AFLOWπ and AFLOW-APL (left) and elec-
tronic properties computed with PAOFLOW (right). (a) Phonon dispersion of CaF2 calculated
with APL (Plata et al. 2017), using the ACBN0 method as implemented within AFLOWπ (green
lines). The results obtained using PBE are shown by the broken orange lines for comparison.
The blue triangles and red unfilled squares represent neutron scattering data from Schmalzl et al.
(2003) and Elcombe and Pryor (1970), respectively, while the purple diamonds represent Raman
and infrared data from Kaiser et al. (1962). (b) Electronic band structure, spin Hall conductivity
(SHC), and (c) spin texture of the nodal line and Weyl points in HfC, as calculated using the
PAOFLOW utility

effect of the Hubbard U corrections on the phonon dispersion calculated using APL)
are included. When possible, AFLOWπ exploits the tight-binding hamiltonians as in
D’Amico et al. (2016). Calculation results can be easily packaged and prepared for
incorporation into the AFLOW.org data repository (see Sect. 5).
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4 PAOFLOW: Fast Characterization

PAOFLOW (Buongiorno Nardelli et al. 2017) is a stand-alone tool to efficiently post-
process standard DFT pseudo-potential plane-wave calculations to generate tight-
binding (TB) Hamiltonians which faithfully reproduce the calculated electronic
structure (eigenvalues and eigenvectors) with arbitrary precision in reciprocal space
(Agapito et al. 2013, 2016a,b) (see Fig. 6b for PAOFLOW generated band structure for
HfC (ICSD #169399, space group #187, AFLOW prototype: AB_hP2_187_d_a)).
By exploiting the simplicity of the TB formalism and the efficiency of fast
Fourier transforms, PAOFLOW interpolates the band structure and computes the
matrix elements of the momentum operator, pm,n. These are used to improve the
quality of integrated quantities such as the density of states (adaptive smearing),
to compute electronic transport coefficients within the constant relaxation time
approximation, and to compute the dielectric constants (D’Amico et al. 2016). In
addition, the pm,n matrix elements facilitate the calculation of the Berry curvature
and related properties (anomalous Hall conductivity, spin Hall conductivity (see
Fig. 6b), magnetic circular dichroism, spin circular dichroism; see spin texture of
the nodal line and Weyl points in HfC shown in Fig. 6c). Starting from a well-
interpolated band structure, it is also possible to compute topological invariants.

Because of the local representation of the electronic structure provided by
the PAOFLOW software, surface-projected band structure and Landauer ballistic
transport are also computable within PAOFLOW.

The software is implemented in Python, is portable and easy to install, and is
parallel by design (on both CPUs and GPUs). PAOFLOW is also an integral part of
the AFLOWπ framework.

5 AFLOW: Data Repository

The AFLOW data repository (Curtarolo et al. 2012b) contains the calculated prop-
erties for over 1.8 million materials entries, obtained using the AFLOW framework.
These properties are available through the aflow.org web portal, which includes
online search/sort and data analysis applications. The repository is programmat-
ically accessible through the AFLOW Data REST-API (Taylor et al. 2014) and the
AFLUX Search-API (Rose et al. 2017).

5.1 AFLOW: Web Portal

The AFLOW repository (Curtarolo et al. 2012b) is available online via the
aflow.org web portal (Fig. 7a). It contains multiple online applications for
data access, processing, and visualization, including the advanced “MendeLIB”
search application at http://aflow.org/advanced.php which facilitates
searching for materials entries with filters for elemental composition and
calculated properties (see Fig. 7b), the interactive convex hull application at
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Fig. 7 AFLOW web portal and data repository. (a) Online applications and documentation are
accessible via the “Apps and Docs” set of buttons surrounded by the dashed red rectangle. (b)
The advanced search application can be used to search for specific compositions and also includes
property search filters, as highlighted by the dashed red rectangle. (c) The AFLOW data repository
is organized into project, set (i.e., alloy system), and calculation (i.e., materials entry) layers

http://aflow.org/aflow-chull (see Sect. 2.4), the online machine
learning model at http://aflow.org/aflow-ml (see Sect. 5.2), and the
AFLOW online tool at http://aflow.org/aflow_online.html which
gives access to AFLOW crystal structure analysis and processing functions. These
applications and more are accessible from the main aflow.org web page, via the
“Apps and Docs” set of buttons highlighted by the dashed red rectangle in Fig. 7a.
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5.2 AFLOW-ML: Online Machine Learning

The AFLOW machine learning (AFLOW-ML) online application provides a user
interface to leverage machine learning models trained on AFLOW data. It accepts
a standard structure file (POSCAR or QE) and outputs predictions for properties
such as the band gap, elastic moduli, heat capacity, Debye temperature, vibrational
free energy, and thermal expansion coefficient. Additionally, structures within the
AFLOW repository can be imported via the sidebar. This application provides an
accessible medium to retrieve machine learning predictions without the need to
install a software library or machine learning package.

Currently, AFLOW-ML supports two different machine learning models. The first
model, property-labeled materials fragments (Isayev et al. 2017), plmf, has been
trained using data from the AFLOW repository and predicts properties such as the
electronic band gap, specific heat capacities, and bulk/shear moduli. The second
method is the molar fraction descriptor model (Legrain et al. 2017), mfd, which
predicts vibrational properties such as vibrational free energy and entropy and is
based only on the chemical composition of the material.

The AFLOW-ML API (Gossett et al. 2018) offers programmatic access to the
AFLOW-ML online application and provides a simplified abstraction that facilitates
leveraging powerful machine learning models. This distills the prediction process
down to its essence: from a structure file, return a prediction. Using the API is a two-
step process: first a structure file, in POSCAR 5 format (structure input for version
5 of VASP), is posted (i.e., uploaded) to the endpoint /<model>/prediction
on the aflow.org server using standard HTTP libraries or dedicated programs
such curl or wget, where <model> specifies the machine learning model to
use in the prediction (current options: plmf and mfd). When a prediction is
submitted, a JSON response object is returned that includes a task id. The results
of the prediction are then retrieved from the /prediction/result/ endpoint
on the aflow.org server by appending the task id to the end of the URL, i.e.,
/prediction/result/{id}/. This endpoint monitors the prediction task and
responds with a JSON object that details its status. When complete, the endpoint
responds with the results of the prediction, represented as a JSON object containing
a key-value pair for each predicted property.

5.3 AFLOW: Database Organization

The AFLOW data repository (Curtarolo et al. 2012b) is organized into project, set,
and calculation layers as illustrated in Fig. 7c. At the project layer, the calculations
are divided into different catalogs based on the origin and composition of the entries
(Taylor et al. 2014; Rose et al. 2017). Within each catalog, entries are grouped into
sets based on shared lattice type or alloy system. The entries within each set contain
the results of DFT calculated properties for particular structures.
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The AFLOW-ICSD catalog contains the DFT calculated properties for over 57,000
experimentally observed materials listed in the Inorganic Crystal Structure Database
(ICSD) (Bergerhoff et al. 1983; Karen and Hellenbrandt 2002). Internally, this
catalog is organized by lattice type and then by individual materials entry. Since the
materials in this catalog are already known to exist, the primary interest is in accu-
rately calculating electronic structure and thermomechanical properties. Therefore,
calculations for this catalog are generally performed using the Hubbard U correction
to the DFT exchange-correlation functional (Liechtenstein et al. 1995; Dudarev
et al. 1998) where appropriate, using a set of standardized U values (Calderon
et al. 2015). Within this catalog, entries are grouped by Bravais lattice type into 14
sets: “BCC”, “BCT”, “CUB”, “FCC”, “HEX’”, “MCL”’, “MCLC”’, “ORC”’, “ORCC”’,
“ORCF”’, “ORCI”’, “RHL”’, “TET”’ and “TRI”’. The name of each materials entry is
generated using the format <composition>_ICSD_<ICSD number>.

The entries in the other catalogs, such as “LIB1,” “LIB2,” and “LIB3”, are
generated by decorating crystal structure prototypes to predict new hypothetical
compounds and contain unary, binary, and ternary materials, respectively. Addi-
tional catalogs, “LIB4,” “LIB5,” and “LIB6,” are currently being generated for
quaternary, quinary, and hexenary materials. Within each catalog, the entries are
grouped by element and exchange-correlation functional in the case of “LIB1” and
by alloy system in the cases of “LIB2” and “LIB3.” “LIB1” contains a total of 3068
entries, while “LIB2” currently has 329,192 entries and “LIB3” has over 1.4 million.
Within each alloy system, the individual materials entries are named according to
the relevant crystal prototype. For these catalogs, the emphasis is on the discovery of
new thermodynamically stable or metastable materials and on their use to generate
the thermodynamic density of states for the prediction of the formation of disordered
materials such as metallic glasses (Perim et al. 2016) or high-entropy alloys (Lederer
et al. 2018). Therefore, calculations in these catalogs are performed using the
GGA-PBE exchange-correlation functional (Perdew et al. 1996) without Hubbard
U corrections (Calderon et al. 2015) so as to produce consistent energy differences,
enabling the calculation of accurate formation enthalpies.

5.4 AFLOW: Database Properties

Materials properties within the AFLOW repository (Curtarolo et al. 2012b) are
indexed as keyword-value pairs which are programmatically accessible via the
AFLOW Data REST-API (Taylor et al. 2014) and programmatically searchable via
the AFLUX Search-API (Rose et al. 2017). Search filters for these properties are
also available in the advanced search application of the aflow.org web portal
as highlighted by the dashed red rectangle in Fig. 7b, where they are grouped into
chemistry (e.g., chemical species, stoichiometry), crystal (e.g., space group, Bravais
lattice type), electronic (e.g., band gaps), thermodynamic (energetic and thermal
properties, e.g., formation enthalpies and Debye temperatures), magnetic, scintil-
lation, mechanical (elastic moduli and pressure-related properties), and calculation
(e.g., k-point mesh, AFLOW version) parameters. In total there are in excess of 170
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Fig. 8 Example band structure and density of states images automatically generated
and served through the AFLOW.org data repository. The structure highlighted is AlCo2Fe
(ICSD #57607): http://aflow.org/material.php?id=Al1Co2Fe1_ICSD_57607. The results of the
spin-polarized calculation are differentiated by color on the band structure plot (black/red for
majority/minority spin) and sign on the density of states plot (positive/negative for majority/minor-
ity spin). The band structure is calculated following the AFLOW Standard path of high-symmetry
k-points (Setyawan and Curtarolo 2010)

million individual materials properties indexed in the AFLOW database (∼100 per
materials entry). Lists of the keywords corresponding to the materials properties are
provided in Taylor et al. (2014), Rose et al. (2017), and Toher et al. (2017).

Systems for which the “STATIC” and “BANDS” calculations have been performed
are supplemented with automatically generated images of the density of states,
projected density of states, and band structure. Both low (PNG)- and high (EPS)-
quality variants of the images are available for download. An example band structure
and density of states image is displayed in Fig. 8.

5.5 AFLOW: Data REST-API

The full data set generated by the high-throughput AFLOW process (Curtarolo
et al. 2012b) is backed by a disk store of (at this time) over 12 TB of input
criteria, calculated results, and derivative output. The backing store is exposed via
the AFLOW Data REST-API (Curtarolo et al. 2012b) in a hierarchical organization.
This direct exposure of our results not only grants the end user a high degree of
utility via direct access, but, more importantly, guarantees data provenance that
promotes reproducibility. The hierarchy of the AFLOW Data REST-API categorizes
this abundance of information into meaningful high-level classifications allowing

http://aflow.org/material.php?id=Al1Co2Fe1_ICSD_57607
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for exploration of self-similar materials that are related by stoichiometric and/or
crystallographic properties. Once a selection of materials has been determined, the
full range of available properties and procedural data are retrievable.

The organizational hierarchy of both the underlying data store and the REST-

API is project dependent, as described in Sect. 5.3. Each project is equivalent
to one of the catalogs listed in Sect. 5.3 and in the REST-API is denoted by
the project layers “ICSD_WEB,” “LIB1_RAW,” “LIB2_RAW,” and “LIB3_RAW.”
Each project layer contains multiple set layers, which correspond to specific
alloy systems in the case of “LIB1_RAW,” “LIB2_RAW,” and “LIB3_RAW.”
For instance, http://aflowlib.duke.edu/AFLOWDATA/LIB2_RAW/
exposes the set layer for binary entries, where each set corresponds to different
binary alloy systems, allowing for pairwise atomic species examination. Within
each set is the entry layer, consisting of decorated structural prototypes which
provide stoichiometric and structural variation for each alloy system. Each
entry contains the calculated results for a particular structure and composition,
organized as keyword-value pairs. The calculated values of thermodynamical,
mechanical, electronic, magnetic, chemical, and crystallographic properties
can be directly accessed by querying a Uniform Resource Identifier (URI) of
the form <server>/<project>/<set>/<entry>/?<keyword>, where
<server> is http://aflowlib.duke.edu/AFLOWDATA, <project> is
the appropriate project layer, <set> is the alloy system, <entry> is the structural
prototype, and <keyword> corresponds to the materials property of interest. A
full description of the REST-API keywords is provided in Taylor et al. (2014), along
with additions in the appendices of Rose et al. (2017) and Toher et al. (2017).

The ability to explore related entries predicated on a multitude of properties
leads directly to novel materials discovery and use. The AFLOW Data REST-API

disseminates our methods and results, without restriction, to a global research
audience in order to promote scientific and engineering advancement.

5.6 AFLUX: Search-API

The Automatic Flow of LUX or AFLUX Search-API (Rose et al. 2017) is a human
usable remote data search API. LUX is designed to be a domain agnostic solution to
the outstanding problem of programmatically searching remote data that typically
is either exposed via a capriciously limited utility or requires a-priori knowledge
of the internal organization of the remote repository. The LUX query concept
flattens the exposed data, while simultaneously providing arbitrarily complex query
capability, allowing an end user full freedom in constraining the requested data. LUX

is designed to operate in the nearly ubiquitous web URI context while minimizing
any potentially conflicting interactions with existing URI functionality.

AFLUX is the domain-specific implementation of LUX and is available at the
<AFLUX-URI>: http://aflowlib.duke.edu/search/API/?. At this
time, the AFLUX API freely exposes over 180 million keyword-value properties
without any requirements or restrictions on the end user. Specific properties and
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compositions can be searched for by appending the appropriate keywords to the
<AFLUX-URI>. Search results can be restricted by including specific values or
value ranges in parentheses after the appropriate keyword. For example, a search
can be restricted to entries that contain both of the elements Na and Cl, and
have a calculated electronic band gap in excess of 1.0eV, by including the search
parameters species(Na,Cl),Egap(1.0*) in the query part of the URI. In
LUX, “,” corresponds to the logical AND operator, and “*” is the loose operator
which extends the search to entries in a specified value range. If no parameters
are provided for a particular keyword, then the values of that property are returned
for all entries which satisfy the remaining search criteria. A full list of all LUX

logical operators can be found in Rose et al. (2017), along with descriptions of their
functionality and appropriate usage.

In addition to materials properties keywords, LUX also accepts directives,
which behave as pseudo property keywords. They are used to provide additional
information on LUX usage and control the format and quantity of the returned
data. Note that any directives included in a search query must come after all of the
materials properties keywords. In particular, the schema directive can be used to
retrieve the most current and canonical list of keywords using the AFLUX summons:
<AFLUX-URI>schema,format(json).

5.7 AFLOW: Data Quality Control

Data quality control, including validation of methodologies and verification of
calculated data, is vital when constructing large databases such as the AFLOW

repository (Curtarolo et al. 2012b) in order to guarantee the reliability of the results.
Methodological validation involves quantifying the accuracy of calculation models
with respect to experiment, while data verification includes checking the robustness
of calculation parameters and the satisfaction of convergence criteria.

Physical models incorporated into the AFLOW framework are validated by com-
parison to benchmark sets of experimental data. This helps determine the predictive
accuracy of the methods for real materials, as well as the regimes in which they are
reliable. For example, the AEL and AGL modules were validated by comparison to
a benchmark set of ∼75 experimentally well-characterized compounds of various
structural types (Toher et al. 2014, 2017), and the accuracy was quantified by the
Pearson and Spearman correlations and the root-mean-square deviations. Similar
validation analyses were performed for the QHA-APL (Nath et al. 2016, 2017) and
AAPL methods (Plata et al. 2017), as well as the property labeled materials fragments
machine learning model (Isayev et al. 2017).

The AFLOW-POCC methodology has been validated by comparing the band gap
as a function of composition for ZnS1−xSex and MgxZn1−xO, and the magnetic
moment per atom as a function of composition for Fe1−xCux , to experimental values
(Yang et al. 2016).

The ACBN0 functional (Agapito et al. 2015), implemented in AFLOWπ (see
Sect. 3) and PAOFLOW (see Sect. 4), has been validated by comparing the lattice
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parameters, bulk moduli, electronic band gaps, phonon modes, high-frequency
dielectric constants, and Born effective changes it produces to the experimentally
measured values for the Zn and Cd chalcogenides (Gopal et al. 2015).

The convergence of both the charge density optimization and the ionic
structural relaxation are automatically verified for all AFLOW calculations prior
to incorporation into the data repository. This includes, for example, checking
that the charge density has converged in accordance with the AFLOW Standard
settings (Calderon et al. 2015) and verifying the relaxation of the cell size
and shape by ensuring that all elements of the stress tensor are less than
10kB. The convergence level for any individual calculation can be verified
by querying appropriate keywords for the stress tensor: stress_tensor,
Pulay stress: Pulay_stress, residual external pressure on the relaxed cell:
pressure_residual, and the δE value for the final electronic convergence
step: delta_electronic_energy_convergence, using the AFLOW Data
REST-API (Taylor et al. 2014) or the AFLUX Search-API (Rose et al. 2017). Initial
calculation parameters can similarly be obtained using the appropriate keywords,
such as the k-point grid, kpoints, or the electronic energy convergence threshold,
delta_electronic_energy_threshold.

Conclusion

The AFLOW Fleet for computational materials design automates first-principles
calculations of materials properties. AFLOW incorporates a wide range of different
modules, including applications for symmetry and thermodynamic stability anal-
ysis, generation of ordered and disordered materials structures, and calculation
of thermomechanical properties, in a single integrated framework. AFLOWπ is a
versatile minimalist framework that includes tools for projection onto pseudo-
atomic orbitals (PAO) and the self-consistent calculation of Hubbard U corrections
using ACBN0. PAOFLOW generates tight-binding Hamiltonians which reproduce
the electronic structure calculated using first-principles methods, facilitating the
rapid calculation of electronic and magnetic properties such as transport coef-
ficients and the Berry curvature. All results are stored in, and disseminated
through, the AFLOW data repository, which is available online at aflow.org
and is programmatically accessible via the AFLOW Data REST-API and the AFLUX

Search-API.
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